IDENTIFICATION OF NOVEL COUMARIN BASED COMPOUNDS AS POTENTIAL INHIBITORS OF THE 3-CHYMOTRYPSIN-LIKE MAIN PROTEASE OF SARS-COV-2 USING DFT, MOLECULAR DOCKING AND MOLECULAR DYNAMICS SIMULATION STUDIES

被引:0
|
作者
MORAN, G. SALGADO. [1 ]
CARDONA, W. I. L. S. O. N., V [2 ]
CANDIA, LORENA. G. E. R. L. I. [3 ]
MENDOZA-HUIZAR, L. H. [4 ]
ABDIZADEH, T. O. O. B. A. [5 ]
机构
[1] Univ Concepcion, Fac Ciencias Quim, Concepcion, Chile
[2] Univ Andres Bello, Fac Ciencias Exactas, Dept Ciencias Quim, Concepcion, Chile
[3] Univ Catolic Santisima Concepcion, Fac Ciencias, Dept Quim Ambiental, Concepcion, Chile
[4] Autonomous Univ Hidalgo State, Acad Area Chem, Mineral De La Reforma, Hidalgo, Mexico
[5] Shahrekord Univ Med Sci, Basic Hlth Sci Inst, Clin Biochem Res Ctr, Shahrekord, Iran
来源
JOURNAL OF THE CHILEAN CHEMICAL SOCIETY | 2022年 / 67卷 / 02期
关键词
COVID-19; SARS-CoV-2; Coumarin; Molecular docking; Molecular dynamics; Density functional theory; DERIVATIVES; PREDICTION; ANALOGS;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
SARS-CoV-2 is the pandemic disease-causing agent COVID-19 with high infection rates. Despite the progress made in vaccine development, there is an urgent need for the identification of antiviral compounds that can tackle better the different phases of SARS-CoV-2. The main protease (Mpro or 3CLpro) of SARS-CoV-2 has a crucial role in viral replication and transcription. In this study, an in silico method was executed to elucidate the inhibitory potential of the synthesized 6-tert-octyl and 6-8-ditert-butyl coumarin compounds against the major protease of SARS-CoV-2 by comprehensive molecular docking and density functional theory (DFT), ADMET properties and molecular dynamics simulation approaches. Both compounds shown favorable interactions with the 3CLpro of the virus. From DFT calculations, HOMO-LUMO values and global descriptors indicated promising results for these compounds. Furthermore, molecular dynamics studies revealed that these ligand-receptor complexes remain stable during simulations and both compounds showed considerably high binding affinity to the main SARS-CoV-2 protease. The results of the study suggest that the coumarin compounds 6-tert-octyl and 6-8-ditert-butyl could be considered as promising scaffolds for the development of potential COVID-19 inhibitors after further studies.
引用
收藏
页码:5521 / 5536
页数:16
相关论文
共 50 条
  • [21] In silico prediction of potential inhibitors for the Main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing
    Kumar, Yogesh
    Singh, Harvijay
    Patel, Chirag N.
    JOURNAL OF INFECTION AND PUBLIC HEALTH, 2020, 13 (09) : 1210 - 1223
  • [22] Molecular Docking and Dynamics Investigations for Identifying Potential Inhibitors of the 3-Chymotrypsin-like Protease of SARS-CoV-2: Repurposing of Approved Pyrimidonic Pharmaceuticals for COVID-19 Treatment
    Elzupir, Amin Osman
    MOLECULES, 2021, 26 (24):
  • [23] Molecular Docking Unveils Prospective Inhibitors for the SARS-COV-2 Main Protease
    Ahmad, Fawad
    Ikram, Saima
    Ahmad, Jamshaid
    Rehman, Irshad Ur
    Khattak, Saeed Ullah
    Butt, Sadia
    Mushtaq, Maryam
    SAINS MALAYSIANA, 2021, 50 (05): : 1473 - 1484
  • [24] Novel piperazine based compounds as potential inhibitors for SARS-CoV-2 Protease Enzyme: Synthesis and molecular docking study
    Omar, Alaa Z.
    Mosa, Tawfik M.
    El-Sadany, Samer K.
    Hamed, Ezzat A.
    El-Atawy, Mohamed
    JOURNAL OF MOLECULAR STRUCTURE, 2021, 1245 (1245)
  • [25] Molecular Docking, ADMET Analysis and Molecular Dynamics (MD) Simulation to Identify Synthetic Isoquinolines as Potential Inhibitors of SARS-CoV-2 MPRO
    Correia, Paulo Ricardo dos Santos
    de Souza, Alesson Henrique Donato
    Chaparro, Andres Reyes
    Tenorio Barajas, Aldo Yair
    Porto, Ricardo Silva
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2023, 19 (05) : 391 - 404
  • [26] Determination of potential inhibitors based on isatin derivatives against SARS-CoV-2 main protease (mpro): a molecular docking, molecular dynamics and structure-activity relationship studies
    Badavath, Vishnu Nayak
    Kumar, Akhil
    Samanta, Pralok K.
    Maji, Siddhartha
    Das, Anik
    Blum, Galia
    Jha, Anjali
    Sen, Anik
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2022, 40 (07) : 3110 - 3128
  • [27] Bilastine Based Drugs as SARS-CoV-2 Protease Inhibitors: Molecular Docking, Dynamics, and ADMET Related Studies
    Kumer, Ajoy
    Chakma, Unesco
    Matin, Mohammed M.
    ORBITAL-THE ELECTRONIC JOURNAL OF CHEMISTRY, 2022, 14 (01): : 15 - 23
  • [28] Identification of Potential SARS-CoV-2 Main Protease Inhibitors Using Drug Repurposing and Molecular Modeling
    Andrianov, Alexander M.
    Furs, Konstantin V.
    Gonchar, Anna V.
    Xie, Xiong
    Karpenko, Anna D.
    Laikov, Yan V.
    Varabyeu, Danila A.
    Liu, Hong
    Tuzikov, Alexander V.
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PT I, ISBRA 2024, 2024, 14954 : 439 - 448
  • [29] Drug repurposing for SARS-CoV-2 main protease: Molecular docking and molecular dynamics investigations
    Omer, Samia E.
    Ibrahim, Tawasol M.
    Krar, Omer A.
    Ali, Amna M.
    Makki, Alaa A.
    Ibraheem, Walaa
    Alzain, Abdulrahim A.
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2022, 29
  • [30] Identification of SARS-CoV-2 Main Protease Inhibitors Using Structure Based Virtual Screening and Molecular Dynamics Simulation of DrugBank Database
    Debnath, Pradip
    Bhaumik, Samhita
    Sen, Debanjan
    Muttineni, Ravi K.
    Debnath, Sudhan
    CHEMISTRYSELECT, 2021, 6 (20): : 4991 - 5013