Moduli problems for operadic algebras

被引:2
|
作者
Calaque, Damien [1 ]
Campos, Ricardo [1 ]
Nuiten, Joost [2 ]
机构
[1] Univ Montpellier, CNRS, IMAG, Montpellier, France
[2] Univ Paul Sabatier, CNRS, IMT, 118 Route Narbonne, Toulouse, France
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2022年 / 106卷 / 04期
基金
欧洲研究理事会;
关键词
HOMOTOPY-THEORY; KOSZUL DUALITY; DEFORMATIONS;
D O I
10.1112/jlms.12666
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A theorem of Pridham and Lurie provides an equivalence between formal moduli problems and Lie algebras in characteristic zero. We prove a generalization of this correspondence, relating formal moduli problems parametrized by algebras over a Koszul operad to algebras over its Koszul dual operad. In particular, when the Lie algebra associated to a deformation problem is induced from a pre-Lie structure, it corresponds to a permutative formal moduli problem. As another example, we obtain a correspondence between operadic formal moduli problems and augmented operads.
引用
收藏
页码:3450 / 3544
页数:95
相关论文
共 50 条
  • [1] Smith ideals of operadic algebras in monoidal model categories
    White, David
    Yau, Donald
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2024, 24 (01): : 341 - 392
  • [2] Moduli Problems for Ring Spectra
    Lurie, Jacob
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, 2010, : 1099 - +
  • [3] Operadic Cobar Constructions, Cylinder Objects and Homotopy Morphisms of Algebras over Operads
    Fresse, Benoit
    ALPINE PERSPECTIVES ON ALGEBRAIC TOPOLOGY, 2009, 504 : 125 - 188
  • [4] Categories of graphs for operadic structures
    Hackney, Philip
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2024, 176 (01) : 155 - 212
  • [5] Moduli spaces of algebras over nonsymmetric operads
    Muro, Fernando
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (03): : 1489 - 1539
  • [6] THE GENUINE OPERADIC NERVE
    Bonventre, Peter
    THEORY AND APPLICATIONS OF CATEGORIES, 2019, 34 : 736 - 780
  • [7] Semipositivity theorems for moduli problems
    Fujino, Osamu
    ANNALS OF MATHEMATICS, 2018, 187 (03) : 639 - 665
  • [8] Formal deformations, contractions and moduli spaces of lie algebras
    Fialowski, Alice
    Penkava, Michael
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (02) : 561 - 582
  • [9] Formal Deformations, Contractions and Moduli Spaces of Lie Algebras
    Alice Fialowski
    Michael Penkava
    International Journal of Theoretical Physics, 2008, 47 : 561 - 582
  • [10] CURVED OPERADIC CALCULUS
    Lucio, Victor Roca I.
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2024, 152 (01): : 45 - 147