The fractional features of a harmonic oscillator with position-dependent mass

被引:128
作者
Baleanu, Dumitru [1 ,2 ]
Jajarmi, Amin [3 ]
Sajjadi, Samaneh Sadat [4 ]
Asad, Jihad H. [5 ]
机构
[1] Cankaya Univ, Dept Math, Fac Arts & Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, POB MG-23, R-76900 Magurele, Romania
[3] Univ Bojnord, Dept Elect Engn, POB 94531-1339, Bojnord, Iran
[4] Hakim Sabzevari Univ, Dept Elect & Comp Engn, Sabzevar, Iran
[5] Palestine Tech Univ, Coll Arts & Sci, Dept Phys, POB 7, Tulkarm, Palestine
关键词
position-dependent mass; harmonic oscillator; Euler-Lagrange equations; fractional derivative; OPTICAL-PROPERTIES; FORMULATION; MOTION;
D O I
10.1088/1572-9494/ab7700
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, a harmonic oscillator with position-dependent mass is investigated. Firstly, as an introduction, we give a full description of the system by constructing its classical Lagrangian; thereupon, we derive the related classical equations of motion such as the classical Euler-Lagrange equations. Secondly, we fractionalize the classical Lagrangian of the system, and then we obtain the corresponding fractional Euler-Lagrange equations (FELEs). As a final step, we give the numerical simulations corresponding to the FELEs within different fractional operators. Numerical results based on the Caputo and the Atangana-Baleanu-Caputo (ABC) fractional derivatives are given to verify the theoretical analysis.
引用
收藏
页数:8
相关论文
共 31 条
[1]   A Hamiltonian formulation and a direct numerical scheme for Fractional Optimal Control Problems [J].
Agrawal, Om P. ;
Baleanu, Dumitru .
JOURNAL OF VIBRATION AND CONTROL, 2007, 13 (9-10) :1269-1281
[2]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[3]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[4]   A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator [J].
Baleanu, D. ;
Jajarmi, A. ;
Sajjadi, S. S. ;
Mozyrska, D. .
CHAOS, 2019, 29 (08)
[5]  
Baleanu D, 2019, ROM REP PHYS, V71
[6]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[7]   The Motion of a Bead Sliding on a Wire in Fractional Sense [J].
Baleanu, D. ;
Jajarmi, A. ;
Asad, J. H. ;
Blaszczyk, T. .
ACTA PHYSICA POLONICA A, 2017, 131 (06) :1561-1564
[8]   New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator [J].
Baleanu, Dumitru ;
Sajjadi, Samaneh Sadat ;
Jajarmi, Amin ;
Asad, Jihad H. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (04)
[9]  
Baleanu D, 2018, P ROMANIAN ACAD A, V19, P447
[10]   On the nonlinear dynamical systems within the generalized fractional derivatives with Mittag-Leffler kernel [J].
Baleanu, Dumitru ;
Jajarmi, Amin ;
Hajipour, Mojtaba .
NONLINEAR DYNAMICS, 2018, 94 (01) :397-414