Probabilistic linear widths of Sobolev space with Jacobi weights on [-1,1]

被引:0
作者
Zhai, Xuebo [1 ]
Hu, Xiuyan [1 ]
机构
[1] Zaozhuang Univ, Sch Math & Stat, Zaozhuang 277160, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2017年
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
probabilistic linear widths; Jacobi weights; weighted Sobolev classes; Gaussian measure;
D O I
10.1186/s13660-017-1540-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Optimal asymptotic orders of the probabilistic linear (n, delta)-widths of lambda(n,delta)(W'(2,alpha,beta), nu, L-q,L-alpha,L-beta) of the weighted Sobolev space W'(2,alpha,beta) equipped with a Gaussian measure. are established, where L-q,L-alpha,L-beta, 1 <= q <= infinity, denotes the L-q space on [-1, 1] with respect to the measure (1-x)(alpha)(1 + x)(beta), alpha, beta > -1/2.
引用
收藏
页数:17
相关论文
共 19 条
  • [1] [Anonymous], 1979, MEMOIRS AMS
  • [2] [Anonymous], PROBABILISTIC AVERAG
  • [3] [Anonymous], 1998, GAUSSIAN MEASURES
  • [4] [Anonymous], RUSSIAN ACAD SCI DOK
  • [5] [Anonymous], INT J WAVELETS MULTI
  • [6] Fractional derivatives and best approximation
    Ditzian, Z
    [J]. ACTA MATHEMATICA HUNGARICA, 1998, 81 (04) : 323 - 348
  • [7] Dunkl CF., 2014, ENCY MATH ITS APPL
  • [8] Probabilistic and average linear widths of Sobolev space with Gaussian measure in L∞-Norm
    Fang, GS
    Ye, PX
    [J]. CONSTRUCTIVE APPROXIMATION, 2003, 20 (01) : 159 - 172
  • [9] Fang GS, 2003, J COMPLEXITY, V19, P73, DOI 10.1016/S0885-064X(02)00005-5
  • [10] A UNIFORM ASYMPTOTIC-EXPANSION OF THE JACOBI-POLYNOMIALS WITH ERROR-BOUNDS
    FRENZEN, CL
    WONG, R
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1985, 37 (05): : 979 - 1007