OPTION PRICING UNDER THE FRACTIONAL STOCHASTIC VOLATILITY MODEL

被引:4
作者
Han, Y. [1 ]
Li, Z. [1 ]
Liu, C. [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
基金
美国国家科学基金会;
关键词
fractional Brownian motion; stochastic volatility; Malliavin calculus; option pricing; ARBITRAGE; LEVERAGE; RETURNS; JUMPS;
D O I
10.1017/S1446181121000225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the European call option pricing problem under the fractional stochastic volatility model. The stochastic volatility model is driven by both fractional Brownian motion and standard Brownian motion. We obtain an analytical solution of the European option price via the Ito's formula for fractional Brownian motion, Malliavin calculus, derivative replication and the fundamental solution method. Some numerical simulations are given to illustrate the impact of parameters on option prices, and the results of comparison with other models are presented.
引用
收藏
页码:123 / 142
页数:20
相关论文
共 34 条
[1]   STOCHASTIC VOLATILITY OPTION PRICING [J].
BALL, CA ;
ROMA, A .
JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 1994, 29 (04) :589-607
[2]  
Barndorff-Nielsen O.E, 1997, Finance Stoch., V2, P41, DOI DOI 10.1007/S007800050032
[3]   Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options [J].
Bates, DS .
REVIEW OF FINANCIAL STUDIES, 1996, 9 (01) :69-107
[4]   PRICING OF OPTIONS AND CORPORATE LIABILITIES [J].
BLACK, F ;
SCHOLES, M .
JOURNAL OF POLITICAL ECONOMY, 1973, 81 (03) :637-654
[5]   INTERTEMPORAL ASSET PRICING MODEL WITH STOCHASTIC CONSUMPTION AND INVESTMENT OPPORTUNITIES [J].
BREEDEN, DT .
JOURNAL OF FINANCIAL ECONOMICS, 1979, 7 (03) :265-296
[6]   The fine structure of asset returns: An empirical investigation [J].
Carr, P ;
Geman, H ;
Madan, DB ;
Yor, M .
JOURNAL OF BUSINESS, 2002, 75 (02) :305-332
[7]   Affine fractional stochastic volatility models [J].
F. Comte ;
L. Coutin ;
E. Renault .
Annals of Finance, 2012, 8 (2-3) :337-378
[8]   Long memory in continuous-time stochastic volatility models [J].
Comte, F ;
Renault, E .
MATHEMATICAL FINANCE, 1998, 8 (04) :291-323
[9]   A THEORY OF THE TERM STRUCTURE OF INTEREST-RATES [J].
COX, JC ;
INGERSOLL, JE ;
ROSS, SA .
ECONOMETRICA, 1985, 53 (02) :385-407
[10]   Stochastic calculus for fractional Brownian motion - I. Theory [J].
Duncan, TE ;
Hu, YZ ;
Pasik-Duncan, B .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (02) :582-612