Feasibility Governor for Linear Model Predictive Control

被引:0
作者
Skibik, Terrence [1 ]
Liao-McPherson, Dominic [2 ]
Cunis, Torbjorn [2 ]
Kolmanovsky, Ilya [2 ]
Nicotra, Marco M. [1 ]
机构
[1] Univ Colorado, Boulder, CO 80309 USA
[2] Univ Michigan, Ann Arbor, MI 48109 USA
来源
2021 AMERICAN CONTROL CONFERENCE (ACC) | 2021年
基金
美国国家科学基金会;
关键词
PIECEWISE-CONSTANT REFERENCES; MPC CONTROLLERS; TRACKING; SYSTEMS; CONSTRAINTS; ATTRACTION; DOMAIN; STATE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces the Feasibility Governor (FG): an add-on unit that enlarges the region of attraction of Model Predictive Control by manipulating the reference to ensure that the underlying optimal control problem remains feasible. The FG is developed for linear systems subject to polyhedral state and input constraints. Offline computations using polyhedral projection algorithms are used to construct the feasibility set. Online implementation relies on the solution of a convex quadratic program that guarantees recursive feasibility. The closed-loop system is shown to satisfy constraints, achieve asymptotic stability, and exhibit zero-offset tracking.
引用
收藏
页码:2329 / 2335
页数:7
相关论文
共 25 条