Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics

被引:31
作者
Zhang, Nanlin [1 ]
Neo, Darren C. J. [1 ]
Tazawa, Yujiro [1 ]
Li, Xiuting [2 ]
Assender, Hazel E. [1 ]
Compton, Richard G. [2 ]
Wattt, Andrew A. R. [1 ]
机构
[1] Univ Oxford, Dept Mat, 16 Parks Rd, Oxford OX1 3PH, England
[2] Univ Oxford, Dept Chem, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England
基金
英国工程与自然科学研究理事会;
关键词
quantum dot; solar cell; band alignment optimization; surface treatment; band gap control; SOLAR-CELLS; PBS; SOLIDS; PASSIVATION; DEVICES;
D O I
10.1021/acsami.6b01018
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 +/- 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.
引用
收藏
页码:21417 / 21422
页数:6
相关论文
共 30 条
  • [1] [Anonymous], 2014, NAT MAT, V13, P796
  • [2] Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange
    Brown, Patrick R.
    Kim, Donghun
    Lunt, Richard R.
    Zhao, Ni
    Bawendi, Moungi G.
    Grossman, Jeffrey C.
    Bulovic, Vladimir
    [J]. ACS NANO, 2014, 8 (06) : 5863 - 5872
  • [3] Polystyrene Templated Porous Titania Wells for Quantum Dot Heterojunction Solar Cells
    Cheng, Cheng
    Lee, Michael M.
    Noel, Nakita K.
    Hughes, Gareth M.
    Ball, James M.
    Assender, Hazel E.
    Snaith, Henry J.
    Watt, Andrew A. R.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (16) : 14247 - 14252
  • [4] Quantum Dot Size Dependent J-V Characteristics in Heterojunction ZnO/PbS Quantum Dot Solar Cells
    Gao, Jianbo
    Luther, Joseph M.
    Semonin, Octavi E.
    Ellingson, Randy J.
    Nozik, Arthur J.
    Beard, Matthew C.
    [J]. NANO LETTERS, 2011, 11 (03) : 1002 - 1008
  • [5] Colloidal nanocrystal quantum dot assemblies as artificial solids
    Hanrath, Tobias
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (03):
  • [6] Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution
    Hines, MA
    Scholes, GD
    [J]. ADVANCED MATERIALS, 2003, 15 (21) : 1844 - 1849
  • [7] Electron Injection from Colloidal PbS Quantum Dots into Titanium Dioxide Nanoparticles
    Hyun, Byung-Ryool
    Zhong, Yu-Wu.
    Bartnik, Adam C.
    Sun, Liangfeng
    Abruna, Hector D.
    Wise, Frank W.
    Goodreau, Jason D.
    Matthews, James R.
    Leslie, Thomas M.
    Borrelli, Nicholas F.
    [J]. ACS NANO, 2008, 2 (11) : 2206 - 2212
  • [8] Ip AH, 2012, NAT NANOTECHNOL, V7, P577, DOI [10.1038/nnano.2012.127, 10.1038/NNANO.2012.127]
  • [9] One-Step Deposition of Photovoltaic Layers Using Iodide Terminated PbS Quantum Dots
    Kim, Sungwoo
    Noh, Jaehong
    Choi, Hyekyoung
    Ha, Heonseok
    Song, Jung Hoon
    Shim, Hyung Cheoul
    Jang, Jihoon
    Beard, Matthew C.
    Jeong, Sohee
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (22): : 4002 - 4007
  • [10] Klimov VI, 2010, NANOCRYSTAL QUANTUM DOTS, SECOND EDITION, P1, DOI 10.1201/9781420079272