A health indicator extraction and optimization for capacity estimation of Li-ion battery using incremental capacity curves

被引:67
作者
Pan, Wenjie [1 ]
Luo, Xuesong [1 ]
Zhu, Maotao [1 ]
Ye, Jia [1 ]
Gong, Lihong [1 ]
Qu, Hengjun [1 ]
机构
[1] Jiangsu Univ, Sch Automot & Traff Engn, Zhenjiang 212013, Peoples R China
关键词
Lithium-ion battery; Incremental capacity; Dimension-reducing indicators; Gaussian process regression; Capacity estimation; DIFFERENTIAL VOLTAGE; DEGRADATION MODES; AGING MECHANISMS; ONLINE STATE; CYCLE LIFE; PROGNOSTICS; MANAGEMENT; REGRESSION; CALENDAR;
D O I
10.1016/j.est.2021.103072
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate lithium battery online capacity and remaining useful life (RUL) estimation are critical to increasing penetration of electric vehicles. Motivated by this, health indicators (HIs) extraction and optimization using incremental capacity curves are proposed. This paper reports a straightforward approach to smooth the noise on IC curves, thereby capturing accurate and reliable HIs. To prevent overfitting in machine learning, a combined weighting method is emphasized to reduce the dimensionality of HIs. It is then used in the modeling of battery capacity estimation as the improved Gaussian process regression is applied. In this framework, results show that the correlation between the battery capacity and dimension-reducing HIs is desirable. Analysis results reveal the above measures' trustworthiness, with the average error of the six batteries is 2.3% under the cross-validation test. What's more, a set of different types of batteries are used to verify the robustness of this method.
引用
收藏
页数:15
相关论文
共 59 条
[1]   Operando lithium plating quantification and early detection of a commercial LiFePO4 cell cycled under dynamic driving schedule [J].
Ansean, D. ;
Dubarry, M. ;
Devie, A. ;
Liaw, B. Y. ;
Garcia, V. M. ;
Viera, J. C. ;
Gonzalez, M. .
JOURNAL OF POWER SOURCES, 2017, 356 :36-46
[2]   Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging [J].
Ansean, D. ;
Dubarry, M. ;
Devie, A. ;
Liaw, B. Y. ;
Garcia, V. M. ;
Viera, J. C. ;
Gonzalez, M. .
JOURNAL OF POWER SOURCES, 2016, 321 :201-209
[3]   Closed-loop optimization of fast-charging protocols for batteries with machine learning [J].
Attia, Peter M. ;
Grover, Aditya ;
Jin, Norman ;
Severson, Kristen A. ;
Markov, Todor M. ;
Liao, Yang-Hung ;
Chen, Michael H. ;
Cheong, Bryan ;
Perkins, Nicholas ;
Yang, Zi ;
Herring, Patrick K. ;
Aykol, Muratahan ;
Harris, Stephen J. ;
Braatz, Richard D. ;
Ermon, Stefano ;
Chueh, William C. .
NATURE, 2020, 578 (7795) :397-+
[4]   A review on lithium-ion battery ageing mechanisms and estimations for automotive applications [J].
Barre, Anthony ;
Deguilhem, Benjamin ;
Grolleau, Sebastien ;
Gerard, Mathias ;
Suard, Frederic ;
Riu, Delphine .
JOURNAL OF POWER SOURCES, 2013, 241 :680-689
[5]   Synthetic vs. Real Driving Cycles: A Comparison of Electric Vehicle Battery Degradation [J].
Baure, George ;
Dubarry, Matthieu .
BATTERIES-BASEL, 2019, 5 (02)
[6]  
Bian X., 2020, IEEE T IND ELECTRON, V68, P12173, DOI [10.1109/TIE.2020.3044779, DOI 10.1109/TIE.2020.3044779]
[7]   Cubic spline interpolation of functions with high gradients in boundary layers [J].
Blatov, I. A. ;
Zadorin, A. I. ;
Kitaeva, E. V. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (01) :7-25
[8]   Differential voltage analyses of high-power lithium-ion cells. 4. Cells containing NMC [J].
Bloom, Ira ;
Walker, Lee K. ;
Basco, John K. ;
Abraham, Daniel P. ;
Christophersen, Jon P. ;
Ho, Chinh D. .
JOURNAL OF POWER SOURCES, 2010, 195 (03) :877-882
[9]   Directionality of thermal gradients in lithium-ion batteries dictates diverging degradation modes [J].
Carter, Rachel ;
Kingston, Todd A. ;
Atkinson, Robert W., III ;
Parmananda, Mukul ;
Dubarry, Matthieu ;
Fear, Conner ;
Mukherjee, Partha P. ;
Love, Corey T. .
CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (03)
[10]   Big data training data for artificial intelligence-based Li-ion diagnosis and prognosis [J].
Dubarry, Matthieu ;
Beck, David .
JOURNAL OF POWER SOURCES, 2020, 479