Highly active engineered IgG3 antibodies against SARS-CoV-2

被引:52
作者
Kallolimath, Somanath [1 ]
Sun, Lin [1 ]
Palt, Roman [1 ]
Stiasny, Karin [2 ]
Mayrhofer, Patrick [3 ]
Gruber, Clemens [4 ]
Kogelmann, Benjamin [1 ,7 ]
Chen, Qiang [5 ,6 ]
Steinkellner, Herta [1 ]
机构
[1] Univ Nat Resources & Life Sci, Dept Appl Genet & Cell Biol, A-1180 Vienna, Austria
[2] Med Univ Vienna, Ctr Virol, A-1090 Vienna, Austria
[3] Univ Nat Resources & Life Sci, Dept Biotechnol, A-1180 Vienna, Austria
[4] Univ Nat Resources & Life Sci, Core Facil Mass Spectrometry, A-1180 Vienna, Austria
[5] Arizona State Univ, Biodesign Inst, Tempe, AZ 85281 USA
[6] Arizona State Univ, Sch Life Sci, Tempe, AZ 85281 USA
[7] Austrian Ctr Ind Biotechnol GmBH, A-1190 Vienna, Austria
基金
奥地利科学基金会;
关键词
engineered IgG3; -based expression; antibodies; SARS-CoV-2; virus neutralization;
D O I
10.1073/pnas.2107249118
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Monoclonal antibodies (mAbs) that efficiently neutralize SARSCoV-2 have been developed at an unprecedented speed. Notwithstanding, there is a vague understanding of the various Ab functions induced beyond antigen binding by the heavy-chain constant domain. To explore the diverse roles of Abs in SARS-CoV-2 immunity, we expressed a SARS-CoV-2 spike protein (SP) binding mAb (H4) in the four IgG subclasses present in human serum (IgG1-4) using glyco-engineered Nicotiana benthamiana plants. All four subclasses, carrying the identical antigen-binding site, were fully assembled in planta and exhibited a largely homogeneous xylose- and fucose-free glycosylation profile. The Ab variants ligated to the SP with an up to fivefold increased binding activity of IgG3. Furthermore, all H4 subtypes were able to neutralize SARS-CoV-2. However, H4-IgG3 exhibited an up to 50-fold superior neutralization potency compared with the other subclasses. Our data point to a strong protective effect of IgG3 Abs in SARS-CoV-2 infection and suggest that superior neutralization might be a consequence of cross-linking the SP on the viral surface. This should be considered in therapy and vaccine development. In addition, we underscore the versatile use of plants for the rapid expression of complex proteins in emergency cases.
引用
收藏
页数:2
相关论文
共 14 条
[1]  
Amanat F, 2020, NAT MED, V26, P1033, DOI [10.1038/s41591-020-0913-5, 10.1101/2020.03.17.20037713]
[2]   Dissecting strategies to tune the therapeutic potential of SARS-CoV-2-specific monoclonal antibody CR3022 [J].
Atyeo, Caroline ;
Slein, Matthew D. ;
Fischinger, Stephanie ;
Burke, John ;
Schafer, Alexandra ;
Leist, Sarah R. ;
Kuzmina, Natalia A. ;
Mire, Chad ;
Honko, Anna ;
Johnson, Rebecca ;
Storm, Nadia ;
Bernett, Matthew ;
Tong, Pei ;
Zuo, Teng ;
Lin, Junrui ;
Zuiani, Adam ;
Linde, Caitlyn ;
Suscovich, Todd ;
Wesemann, Duane R. ;
Griffiths, Anthony ;
Desjarlais, John R. ;
Juelg, Boris D. ;
Goudsmit, Jaap ;
Bukreyev, Alexander ;
Baric, Ralph ;
Alter, Galit .
JCI INSIGHT, 2021, 6 (01)
[3]   Bispecific Anti-HIV-1 Antibodies with Enhanced Breadth and Potency [J].
Bournazos, Stylianos ;
Gazumyan, Anna ;
Seaman, Michael S. ;
Nussenzweig, Michel C. ;
Ravetch, Jeffrey V. .
CELL, 2016, 165 (07) :1609-1620
[4]   Hinge length contributes to the phagocytic activity of HIV-specific IgG1 and IgG3 antibodies [J].
Chu, Thach H. ;
Crowley, Andrew R. ;
Backes, Iara ;
Chang, Cheryl ;
Tay, Matthew ;
Broge, Thomas ;
Tuyishime, Marina ;
Ferrari, Guido ;
Seaman, Michael S. ;
Richardson, Simone I. ;
Tomaras, Georgia D. ;
Alter, Galit ;
Leib, David ;
Ackerman, Margaret E. .
PLOS PATHOGENS, 2020, 16 (02)
[5]   Role of IgG3 in Infectious Diseases [J].
Damelang, Timon ;
Rogerson, Stephen J. ;
Kent, Stephen J. ;
Chung, Amy W. .
TRENDS IN IMMUNOLOGY, 2019, 40 (03) :197-211
[6]   Intra-Spike Crosslinking Overcomes Antibody Evasion by HIV-1 [J].
Galimidi, Rachel P. ;
Klein, Joshua S. ;
Politzer, Maria S. ;
Bai, Shiyu ;
Seaman, Michael S. ;
Nussenzweig, Michel C. ;
West, Anthony P., Jr. ;
Bjorkman, Pamela J. .
CELL, 2015, 160 (03) :433-446
[7]   Expression Profiling and Glycan Engineering of IgG Subclass 1-4 inNicotiana benthamiana [J].
Kallolimath, Somanath ;
Hackl, Thomas ;
Gahn, Raphaela ;
Gruenwald-Gruber, Clemens ;
Zich, Wilhelm ;
Kogelmann, Benjamin ;
Lux, Anja ;
Nimmerjahn, Falk ;
Steinkellner, Herta .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
[8]   Structures and distributions of SARS-CoV-2 spike proteins on intact virions [J].
Ke, Zunlong ;
Oton, Joaquin ;
Qu, Kun ;
Cortese, Mirko ;
Zila, Vojtech ;
McKeane, Lesley ;
Nakane, Takanori ;
Zivanov, Jasenko ;
Neufeldt, Christopher J. ;
Cerikan, Berati ;
Lu, John M. ;
Peukes, Julia ;
Xiong, Xiaoli ;
Krausslich, Hans-Georg ;
Scheres, Sjors H. W. ;
Bartenschlager, Ralf ;
Briggs, John A. G. .
NATURE, 2020, 588 (7838) :498-+
[9]   Dynamics of CD4 T Cell and Antibody Responses in COVID-19 Patients With Different Disease Severity [J].
Koblischke, Maximilian ;
Traugott, Marianna T. ;
Medits, Iris ;
Spitzer, Felicia S. ;
Zoufaly, Alexander ;
Weseslindtner, Lukas ;
Simonitsch, Cara ;
Seitz, Tamara ;
Hoepler, Wolfgang ;
Puchhammer-Stoeckl, Elisabeth ;
Aberle, Stephan W. ;
Foedinger, Manuela ;
Bergthaler, Andreas ;
Kundi, Michael ;
Heinz, Franz X. ;
Stiasny, Karin ;
Aberle, Judith H. .
FRONTIERS IN MEDICINE, 2020, 7
[10]   Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity [J].
Larsen, Mads Delbo ;
de Graaf, Erik L. ;
Sonneveld, Myrthe E. ;
Plomp, H. Rosina ;
Nouta, Jan ;
Hoepel, Willianne ;
Chen, Hung-Jen ;
Linty, Federica ;
Visser, Remco ;
Brinkhaus, Maximilian ;
Sustic, Tonci ;
de Taeye, Steven W. ;
Bentlage, Arthur E. H. ;
Toivonen, Suvi ;
Koeleman, Carolien A. M. ;
Sainio, Susanna ;
Kootstra, Neeltje A. ;
Brouwer, Philip J. M. ;
Geyer, Chiara Elisabeth ;
Derksen, Ninotska I. L. ;
Wolbink, Gertjan ;
de Winther, Menno ;
Sanders, Rogier W. ;
van Gils, Marit J. ;
de Bruin, Sanne ;
Vlaar, Alexander P. J. ;
Rispens, Theo ;
den Dunnen, Jeroen ;
Zaaijer, Hans L. ;
Wuhrer, Manfred ;
van dDer Schoot, C. Ellen ;
Vidarsson, Gestur .
SCIENCE, 2021, 371 (6532) :907-+