Design and control of the nonholonomic manipulator

被引:50
作者
Nakamura, Y [1 ]
Chung, W
Sordalen, OJ
机构
[1] Univ Tokyo, Dept Mechano Informat, Tokyo 113, Japan
[2] Korea Inst Sci & Technol, Adv Robot Res Ctr, Seoul 136791, South Korea
[3] ABB Corp Res, N-1375 Billingstad, Norway
来源
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION | 2001年 / 17卷 / 01期
基金
日本学术振兴会;
关键词
chained form; nonholonomic constraint; nonlinear control; robot manipulator; underactuated system;
D O I
10.1109/70.917082
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonholonomic constraints are exploited to design a controllable eta -joint manipulator with only two inputs. Gears subject to nonholonomic constraints are designed to transmit velocities from the inputs to the passive joints, The system possesses a triangular structure for which a conversion into chained form is presented, The nonholonomic manipulator can, therefore, be controlled with an open loop or a closed loop using existing controllers for chained form, Mechanical design is established, and experimental results proved the usefulness of design of the nonholonomic manipulator and applied control schemes. While previous publications have assumed that the nonholonomic systems are given and have developed theory for these systems, this paper points out a new direction where the nonholonomic theory is used to design controllable and stabilizable systems.
引用
收藏
页码:48 / 59
页数:12
相关论文
共 51 条
[1]  
Agarwal PK, 1997, IEEE INT CONF ROBOT, P3124, DOI 10.1109/ROBOT.1997.606763
[2]  
ASTOLFI A, 1995, IEEE INT CONF ROBOT, P1391, DOI 10.1109/ROBOT.1995.525472
[3]  
Brockett R.W., 1983, Differential Geometric Control Theory, P181
[4]  
BUSHNELL L, 1993, PROCEEDINGS OF THE 32ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P3447, DOI 10.1109/CDC.1993.325853
[5]  
Chung W, 1997, IEEE INT CONF ROBOT, P455, DOI 10.1109/ROBOT.1997.620079
[6]  
Chung W, 1998, 1998 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS - PROCEEDINGS, VOLS 1-3, P1027, DOI 10.1109/IROS.1998.727434
[7]  
Colgate JE, 1996, IEEE INT CONF ROBOT, P539, DOI 10.1109/ROBOT.1996.503831
[8]   GLOBAL ASYMPTOTIC STABILIZATION FOR CONTROLLABLE SYSTEMS WITHOUT DRIFT [J].
CORON, JM .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1992, 5 (03) :295-312
[9]  
DEWIT CC, 1992, IEEE T AUTOMAT CONTR, V37, P1791, DOI 10.4173/mic.1992.1.1