A continuum limit of the relativistic Toda lattice: asymptotic theory of discrete Laurent orthogonal polynomials with varying recurrence coefficients

被引:10
作者
Coussement, J [1 ]
Van Assche, W [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 15期
关键词
D O I
10.1088/0305-4470/38/15/008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the continuum limit of the relativistic Toda lattice. In particular, we propose a method in order to 'integrate' this system of nonlinear partial differential equations for some particular initial data and boundary conditions, before possible shocks. First, we recall the relation between the finite relativistic Toda lattice and the theory of discrete Laurent orthogonal polynomials. Our analysis is then based on some results for the asymptotic theory of discrete Laurent orthogonal polynomials with varying recurrence coefficients and the connection with a constrained and weighted extremal problem for logarithmic potentials.
引用
收藏
页码:3337 / 3366
页数:30
相关论文
共 39 条
[1]  
[Anonymous], INDAG MATH
[2]  
[Anonymous], LECTURE NOTES PHYSIC
[3]   Asymptotics of discrete orthogonal polynomials and the continuum limit of the Toda lattice [J].
Aptekarev, AI ;
Van Assche, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48) :10627-10637
[4]   On a conjecture of E. A. Rakhmanov [J].
Beckermann, B .
CONSTRUCTIVE APPROXIMATION, 2000, 16 (03) :427-448
[5]  
BILLINGSLEY P., 1999, Convergence of Probability Measures, V2nd, DOI 10.1002/9780470316962
[6]   RECURSION OPERATOR AND BACKLUND-TRANSFORMATIONS FOR THE RUIJS']JSENAARS-TODA LATTICE [J].
BRUSCHI, M ;
RAGNISCO, O .
PHYSICS LETTERS A, 1988, 129 (01) :21-25
[7]   LAX REPRESENTATION AND COMPLETE-INTEGRABILITY FOR THE PERIODIC RELATIVISTIC TODA LATTICE [J].
BRUSCHI, M ;
RAGNISCO, O .
PHYSICS LETTERS A, 1989, 134 (06) :365-370
[8]  
Buyarov V.S., 1999, MAT SBORNIK, V190, P11, DOI 10.4213/sm407
[9]   Families of equilibrium measures in an external field on the real axis [J].
Buyarov, VS ;
Rakhmanov, EA .
SBORNIK MATHEMATICS, 1999, 190 (5-6) :791-802
[10]  
Cohn D. L., 2013, Measure Theory