The solutions of certain generalized anomalous diffusion equations of fractional order

被引:0
作者
Jaimini, B. B. [1 ]
Saxena, Hemlata [1 ]
机构
[1] Govt PG Coll, Dept Math, Kota 324001, Rajasthan, India
关键词
Diffusion equation; Laplace transform; Fourier transform; Fractional derivatives; Mittag-Leffler function; H-function; KINETIC-EQUATION; DYNAMICS;
D O I
10.1007/s10509-010-0399-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we have proposed certain generalizations of anomalous diffusion equations for fractional order. These diffusion equations are solved by the method of Laplace transform with respect to the time variable and Fourier transform with respect to the space variable. The solutions of some known diffusion equations are also shown to be derived here.
引用
收藏
页码:289 / 293
页数:5
相关论文
共 22 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], INT J SCI RES
[3]  
[Anonymous], 1989, INTEGRALS SERIES
[4]  
Haken H., 2004, Synergetics Introduction and Advanced Topics
[5]   A HEURISTIC REMARK ON THE PERIODIC VARIATION IN THE NUMBER OF SOLAR NEUTRINOS DETECTED ON EARTH [J].
HAUBOLD, HJ ;
MATHAI, AM .
ASTROPHYSICS AND SPACE SCIENCE, 1995, 228 (1-2) :113-134
[6]   The fractional kinetic equation and thermonuclear functions [J].
Haubold, HJ ;
Mathai, AM .
ASTROPHYSICS AND SPACE SCIENCE, 2000, 273 (1-4) :53-63
[7]  
Krall N., 1973, Principles of Plasma Physics actic
[8]  
Kulsrud R. M., 2005, Plasma Physics for Astrophysics
[9]  
Mathai AM, 1978, The H function with Applications in Statistics and Other Disciplines
[10]   The random walk's guide to anomalous diffusion: a fractional dynamics approach [J].
Metzler, R ;
Klafter, J .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01) :1-77