On the regularity of stochastic currents, fractional Brownian motion and applications to a turbulence model

被引:12
作者
Flandoli, Franco [1 ]
Gubinelli, Massimiliano [2 ]
Russo, Francesco [3 ,4 ]
机构
[1] Univ Pisa, Dipartimento Matemat Applicata, I-56126 Pisa, Italy
[2] Univ Paris 11, Math Lab, F-91405 Orsay, France
[3] Univ Paris 13, Inst Galilee, F-93430 Villetaneuse, France
[4] INRIA Paris Rocquencort, Projet MATHFI, F-78153 Le Chesnay, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2009年 / 45卷 / 02期
关键词
Pathwise stochastic integrals; Currents; Forward and symmetric integrals; Fractional Brownian motion; Vortex filaments; ITOS FORMULA; CALCULUS;
D O I
10.1214/08-AIHP174
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the pathwise regularity of the map phi bar right arrow I(phi) = integral(T)(0)(phi(X-t), dX(t)), where phi is a vector function on R-d belonging to some Banach space V, X is a stochastic process and the integral is some version of a stochastic integral defined via regularization. A continuous version of this map, seen as a random element of the topological dual of V will be called stochastic current. We give sufficient conditions for the current to live in some Sobolev space of distributions and we provide elements to conjecture that those are also necessary. Next we verify the sufficient conditions when the process X is a d-dimensional fractional Brownian motion (fBm); we identify regularity in Sobolev spaces for fBm with Hurst index H is an element of E (1/4, 1). Next we provide some results about general Sobolev regularity of currents when W is a standard Wiener process. Finally we discuss applications to a model of random vortex filaments in turbulent fluids.
引用
收藏
页码:545 / 576
页数:32
相关论文
共 22 条
  • [1] Alòs E, 2001, TAIWAN J MATH, V5, P609
  • [2] [Anonymous], ELECT J PROBAB
  • [3] The importance of strictly local martingales; applications to radial Ornstein-Uhlenbeck processes
    Elworthy, KD
    Li, XM
    Yor, M
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1999, 115 (03) : 325 - 355
  • [4] Embrechts P, 2002, PRIN SER APPL MATH, P1
  • [5] Stochastic currents
    Flandoli, F
    Gubinelli, M
    Giaquinta, M
    Tortorelli, VM
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2005, 115 (09) : 1583 - 1601
  • [6] Probabilistic models of vortex filaments
    Flandoli, F
    Minelli, I
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (04) : 713 - 731
  • [7] On a probabilistic description of small scale structures in 3D fluids
    Flandoli, F
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2002, 38 (02): : 207 - 228
  • [8] The Gibbs ensemble of a vortex filament
    Flandoli, F
    Gubinelli, M
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (03) : 317 - 340
  • [9] Statistics of a vortex filament model
    Flandoli, F
    Gubinelli, M
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2005, 10 : 865 - 900
  • [10] FLANDOLI F, 2004, RANDOM CURRENTS PROB