Novelty search for global optimization

被引:42
作者
Fister, Iztok [1 ,2 ]
Iglesias, Andres [2 ]
Galvez, Akemi [2 ]
Del Ser, Javier [3 ,4 ,5 ]
Osaba, Eneko [5 ]
Fister, Iztok, Jr. [1 ]
Perc, Matjaz [6 ,7 ,8 ]
Slavinec, Mitja [6 ]
机构
[1] Univ Maribor, Fac Elect Engn & Comp Sci, SI-2000 Maribor, Slovenia
[2] Univ Cantabria, Ave Castros S-N, E-39005 Santander, Spain
[3] Univ Basque Country, UPV EHU, Bilbao, Spain
[4] BCAM, Bilbao, Spain
[5] TECNALIA Res & Innovat, Derio 48160, Spain
[6] Univ Maribor, Fac Nat Sci & Math, Koroska Cesta 160, SI-2000 Maribor, Slovenia
[7] Univ Maribor, CAMTP, Mladinska 3, SI-2000 Maribor, Slovenia
[8] Complex Sci Hub Vienna, Josefstadterstr 39, A-1080 Vienna, Austria
基金
欧盟地平线“2020”;
关键词
Novelty search; Differential evolution; Swarm intelligence; Evolutionary robotics; Artificial life; STATISTICAL COMPARISONS; DIFFERENTIAL EVOLUTION; CLASSIFIERS; TESTS;
D O I
10.1016/j.amc.2018.11.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Novelty search is a tool in evolutionary and swarm robotics for maintaining the diversity of population needed for continuous robotic operation. It enables nature-inspired algorithms to evaluate solutions on the basis of the distance to their k-nearest neighbors in the search space. Besides this, the fitness function represents an additional measure for evaluating the solution, with the purpose of preserving the so-named novelty solutions into the next generation. In this study, a differential evolution was hybridized with novelty search. The differential evolution is a well-known algorithm for global optimization, which is applied to improve the results obtained by the other solvers on the CEC-14 benchmark function suite. Furthermore, functions of different dimensions were taken into consideration, and the influence of the various novelty search parameters was analyzed. The results of experiments show a great potential for using novelty search in global optimization. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:865 / 881
页数:17
相关论文
共 30 条
[1]  
[Anonymous], 1963, DISTRIBUTION EREE MU
[2]  
[Anonymous], 1852, ORIGIN SPECIES
[3]  
Brest J., 2014, P 2014 IEEE S DIFFER, P1
[4]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[5]   Exploration and Exploitation in Evolutionary Algorithms: A Survey [J].
Crepinsek, Matej ;
Liu, Shih-Hsi ;
Mernik, Marjan .
ACM COMPUTING SURVEYS, 2013, 45 (03)
[6]  
Deb K., 2001, MULTIOBJECTIVE OPTIM, DOI [10.1002/9780470496947, DOI 10.1002/9780470496947]
[7]  
Demsar J, 2006, J MACH LEARN RES, V7, P1
[8]   A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms [J].
Derrac, Joaquin ;
Garcia, Salvador ;
Molina, Daniel ;
Herrera, Francisco .
SWARM AND EVOLUTIONARY COMPUTATION, 2011, 1 (01) :3-18
[9]  
Doncieux S., 2010, IEEE Congress on Evolutionary Computation, P1
[10]   Beyond black-box optimization: a review of selective pressures for evolutionary robotics [J].
Doncieux, Stephane ;
Mouret, Jean-Baptiste .
EVOLUTIONARY INTELLIGENCE, 2014, 7 (02) :71-93