A deterministic guide for material and mode dependence of on-chip electro-optic modulator performance

被引:33
作者
Amin, Rubab [1 ]
Suer, Can [1 ]
Ma, Zhizhen [1 ]
Sarpkaya, Ibrahim [1 ]
Khurgin, Jacob B. [2 ]
Agarwal, Ritesh [3 ]
Sorger, Volker J. [1 ]
机构
[1] George Washington Univ, Dept Elect & Comp Engn, 800 22ndSt,Sci & Engn Hall, Washington, DC 20052 USA
[2] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[3] Univ Penn, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
关键词
Modulation; Electro-optic; Plasmonics; Graphene; Silicon; Waveguide; WAVE-GUIDE; OPTICAL MODULATOR; CARRIER-INJECTION; SILICON; GRAPHENE; LIGHT; FILMS;
D O I
10.1016/j.sse.2017.06.024
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electro-optic modulation is a key function in optical data communication and possible future optical computing engines. The performance of modulators intricately depends on the interaction between the actively modulated material and the propagating waveguide mode. While high-performing modulators were demonstrated before, the approaches were taken as ad-hoc. Here we show the first systematic investigation to incorporate a holistic analysis for high-performance and ultra-compact electro-optic modulators on-chip. We show that intricate interplay between active modulation material and optical mode plays a key role in the device operation. Based on physical tradeoffs such as index modulation, loss, optical confinement factors and slow-light effects, we find that bias-material-mode regions exist where high phase modulation and high loss (absorption) modulation is found. This work paves the way for a holistic design rule of electro-optic modulators for on-chip integration. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:92 / 101
页数:10
相关论文
共 59 条
[1]   Guiding and confining light in void nanostructure [J].
Almeida, VR ;
Xu, QF ;
Barrios, CA ;
Lipson, M .
OPTICS LETTERS, 2004, 29 (11) :1209-1211
[2]  
[Anonymous], 2005, KRAMERS KRONIG RELAT, DOI [10.1007/3-540-27316-6_6, DOI 10.1007/B138913]
[3]   Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO [J].
Baek, Junsu ;
You, Jong-Bum ;
Yu, Kyoungsik .
OPTICS EXPRESS, 2015, 23 (12) :15863-15876
[4]  
Bassani F, HDB SYNCHROTRON RAD, V1, P463
[5]   Athermal Broadband Graphene Optical Modulator with 35 GHz Speed [J].
Dalir, Hamed ;
Xia, Yang ;
Wang, Yuan ;
Zhang, Xiang .
ACS PHOTONICS, 2016, 3 (09) :1564-1568
[6]   PlasMOStor: A Metal-Oxide-Si Field Effect Plasmonic Modulator [J].
Dionne, Jennifer A. ;
Diest, Kenneth ;
Sweatlock, Luke A. ;
Atwater, Harry A. .
NANO LETTERS, 2009, 9 (02) :897-902
[7]   Unity-Order Index Change in Transparent Conducting Oxides at Visible Frequencies [J].
Feigenbaum, Eyal ;
Diest, Kenneth ;
Atwater, Harry A. .
NANO LETTERS, 2010, 10 (06) :2111-2116
[8]   Chip-integrated ultrafast graphene photodetector with high responsivity [J].
Gan, Xuetao ;
Shiue, Ren-Jye ;
Gao, Yuanda ;
Meric, Inanc ;
Heinz, Tony F. ;
Shepard, Kenneth ;
Hone, James ;
Assefa, Solomon ;
Englund, Dirk .
NATURE PHOTONICS, 2013, 7 (11) :883-887
[9]   Excitation of Plasmonic Waves in Graphene by Guided-Mode Resonances [J].
Gao, Weilu ;
Shu, Jie ;
Qiu, Ciyuan ;
Xu, Qianfan .
ACS NANO, 2012, 6 (09) :7806-7813
[10]   Ring resonator modulators in silicon for interchip photonic links [J].
Oracle Labs., Oracle, San Diego, CA 92121, United States .
IEEE J Sel Top Quantum Electron, 2013, 6