Prediction of intensity of moderate and intense geomagnetic storms using artificial neural network during two complete solar cycles 23 and 24

被引:5
作者
Singh, P. K. [1 ]
机构
[1] Shiv Nadar Univ, Sch Engn, Dept Mech Engn, Gautam Buddha Nagar 201314, Uttar Pradesh, India
基金
美国国家航空航天局;
关键词
Geomagnetic storms; Dst index; Neural network; Solar cycle; CORONAL MASS EJECTIONS; MAGNETIC STORMS; HIDDEN NEURONS; CMES; NUMBER; BOUNDS; INDEX;
D O I
10.1007/s12648-021-02192-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work aims to predict moderate, intense, and super geomagnetic storms during the two recent solar cycles 23 and 24 encompassing the period 1996-2018 using an artificial neural network (ANN). Optimization of the neural network includes a choice of activation function, training function, learning function, hidden layers, hidden neurons, learning rate, and momentum constant. The results obtained by the present study show the ability of the ANN model to produce an accurate estimate of the probability appearance of moderate and intense storms of about 88.9%.
引用
收藏
页码:2235 / 2242
页数:8
相关论文
共 31 条
[1]  
[Anonymous], 2006, Pattern recognition and machine learning
[2]   Geomagnetic storms caused by coronal mass ejections (CMEs): March 1996 through June 1997 [J].
Brueckner, GE ;
Delaboudiniere, JP ;
Howard, RA ;
Paswaters, SE ;
St Cyr, OC ;
Schwenn, R ;
Lamy, P ;
Simnett, GM ;
Thompson, B ;
Wang, D .
GEOPHYSICAL RESEARCH LETTERS, 1998, 25 (15) :3019-3022
[3]   EMPIRICAL RELATIONSHIP BETWEEN INTERPLANETARY CONDITIONS AND DST [J].
BURTON, RK ;
MCPHERRON, RL ;
RUSSELL, CT .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1975, 80 (31) :4204-4214
[4]   Probabilistic forecasting of the disturbance storm time index: An autoregressive Gaussian process approach [J].
Chandorkar, M. ;
Camporeale, E. ;
Wing, S. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2017, 15 (08) :1004-1019
[5]   Real-time shock arrival predictions during the "Halloween 2003 epoch" [J].
Dryer, M ;
Smith, Z ;
Fry, CD ;
Sun, W ;
Deehr, CS ;
Akasofu, SI .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2004, 2 (09)
[6]   Interplanetary conditions causing intense geomagnetic storms (Dst ≤-100 nT) during solar cycle 23 (1996-2006) [J].
Echer, E. ;
Gonzalez, W. D. ;
Tsurutani, B. T. ;
Gonzalez, A. L. C. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2008, 113 (A5)
[7]   CRITERIA OF INTERPLANETARY PARAMETERS CAUSING INTENSE MAGNETIC STORMS (DST LESS-THAN - 100-NT) [J].
GONZALEZ, WD ;
TSURUTANI, BT .
PLANETARY AND SPACE SCIENCE, 1987, 35 (09) :1101-1109
[8]   Multiple-Hour-Ahead Forecast of the Dst Index Using a Combination of Long Short-Term memory Neural Network and Gaussian Process [J].
Gruet, M. A. ;
Chandorkar, M. ;
Sicard, A. ;
Camporeale, E. .
SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2018, 16 (11) :1882-1896
[9]   The Solar Cycle [J].
Hathaway, David H. .
LIVING REVIEWS IN SOLAR PHYSICS, 2010, 7 (01)
[10]   Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions [J].
Huang, GB ;
Babri, HA .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1998, 9 (01) :224-229