A Bacterial Foraging Based Smart Offloading for IoT Sensors in Edge Computing

被引:8
作者
Babar, Mohammad [1 ]
Din, Ahmad [1 ]
Alzamzami, Ohoud [2 ]
Karamti, Hanen [3 ]
Khan, Ahmad [1 ]
Nawaz, Muhammad [4 ]
机构
[1] COMSATS Univ Islamabad, Dept Comp Sci, Abbottabad Campus, Islamabad, Pakistan
[2] King Abdulaziz Univ, Fac Comp & Informat Technol, Dept Comp Sci, Jeddah, Saudi Arabia
[3] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Dept Comp Sci, POB 84428, Riyadh 11671, Saudi Arabia
[4] Inst Management Sci Peshawar, Peshawar, Pakistan
关键词
Internet of things; Smart sensors; Edge computing; computation offloading; and resource scheduling;
D O I
10.1016/j.compeleceng.2022.108123
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The main aim of edge computing is to facilitate the low power computational IoT sensors in processing heavy tasks. Sensors should be enough efficient to offload the required task and get back the computation results in the stipulated time. However, acquiring the desired quality of services (QoS) is a challenging task. Therefore, efficient resource management is inevitable to reduce the response time and communication cost. In this paper, a computation offloading algorithm based on nature-inspired multi-objective bacterial foraging optimization (MO-BFO) is proposed for load management over edge servers. The performance of the proposed MO-BFO algorithm is quantitatively evaluated against standard ant colony optimization (ACO), particle swarm optimization (PSO), and round-robin (RR) scheduler. The detailed results show that the proposed algorithm reduces the response time, communication cost, and ensures effective load management compared to its counterparts.
引用
收藏
页数:12
相关论文
共 24 条
[1]   Deep reinforcement learning approach for computation offloading in blockchain-enabled communications systems [J].
Alam, Tanweer ;
Ullah, Arif ;
Benaida, Mohamed .
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 14 (8) :9959-9972
[2]   Delay-Aware and Energy-Efficient Computation Offloading in Mobile-Edge Computing Using Deep Reinforcement Learning [J].
Ale, Laha ;
Zhang, Ning ;
Fang, Xiaojie ;
Chen, Xianfu ;
Wu, Shaohua ;
Li, Longzhuang .
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (03) :881-892
[3]  
Apat H. K., 2020, 2020 INT C COMP SCI, P1, DOI DOI 10.1109/ICCSEA49143.2020.9132855
[4]   Scalable Edge Computing for IoT and Multimedia Applications Using Machine Learning [J].
Babar, Mohammad ;
Khan, Muhammad Sohail ;
Habib, Usman ;
Shah, Babar ;
Ali, Farman ;
Song, Dongho .
HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2021, 11
[5]   ScalEdge: A framework for scalable edge computing in Internet of things-based smart systems [J].
Babar, Mohammad ;
Khan, Muhammad Sohail .
INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2021, 17 (07)
[6]   Intelligent Computation Offloading for IoT Applications in Scalable Edge Computing Using Artificial Bee Colony Optimization [J].
Babar, Mohammad ;
Khan, Muhammad Sohail ;
Din, Ahmad ;
Ali, Farman ;
Habib, Usman ;
Kwak, Kyung Sup .
COMPLEXITY, 2021, 2021
[7]   Cloudlet Computing: Recent Advances, Taxonomy, and Challenges [J].
Babar, Mohammad ;
Khan, Muhammad Sohail ;
Ali, Farman ;
Imran, Muhammad ;
Shoaib, Muhammad .
IEEE ACCESS, 2021, 9 :29609-29622
[8]   Communicating While Computing [Distributed mobile cloud computing over 5G heterogeneous networks] [J].
Barbarossa, Sergio ;
Sardellitti, Stefania ;
Di Lorenzo, Paolo .
IEEE SIGNAL PROCESSING MAGAZINE, 2014, 31 (06) :45-55
[9]  
Dai B, IEEE INTERNET THINGS, V2022
[10]   User-Centric Computation Offloading for Edge Computing [J].
Deng, Xiaoheng ;
Sun, Zihui ;
Li, Deng ;
Luo, Jie ;
Wan, Shaohua .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (16) :12559-12568