Energy-Preserving Integrators and the Structure of B-series

被引:53
作者
Celledoni, Elena [1 ]
McLachlan, Robert I. [2 ]
Owren, Brynjulf [1 ]
Quispel, G. R. W. [3 ]
机构
[1] NTNU, Dept Math Sci, N-7491 Trondheim, Norway
[2] Massey Univ, Inst Fundamental Sci, Palmerston North, New Zealand
[3] La Trobe Univ, Dept Math, Bundoora, Vic 3086, Australia
基金
澳大利亚研究理事会;
关键词
B-series methods; Symplectic integration; Energy preservation; Trees; Conjugate methods; RUNGE-KUTTA METHODS; SYMPLECTIC INTEGRATORS; NUMERICAL INTEGRATORS; CONSERVATION; SYSTEMS; ODES;
D O I
10.1007/s10208-010-9073-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
B-series are a powerful tool in the analysis of Runge-Kutta numerical integrators and some of their generalizations ("B-series methods"). A general goal is to understand what structure-preservation can be achieved with B-series and to design practical numerical methods that preserve such structures. B-series of Hamiltonian vector fields have a rich algebraic structure that arises naturally in the study of symplectic or energy-preserving B-series methods and is developed in detail here. We study the linear subspaces of energy-preserving and Hamiltonian modified vector fields which admit a B-series, their finite-dimensional truncations, and their annihilators. We characterize the manifolds of B-series that are conjugate to Hamiltonian and conjugate to energy-preserving and describe the relationships of all these spaces.
引用
收藏
页码:673 / 693
页数:21
相关论文
共 26 条
[1]  
[Anonymous], 2008, Numerical Methods for Ordinary Differential Equations
[2]   CANONICAL B-SERIES [J].
CALVO, MP ;
SANZSERNA, JM .
NUMERISCHE MATHEMATIK, 1994, 67 (02) :161-175
[3]   ENERGY-PRESERVING RUNGE-KUTTA METHODS [J].
Celledoni, Elena ;
McLachlan, Robert I. ;
McLaren, David I. ;
Owren, Brynjulf ;
Quispel, G. Reinout W. ;
Wright, William M. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (04) :645-649
[4]  
Chartier P, 2007, IMA J NUMER ANAL, V27, P381, DOI [10.1093/imanum/dr1039, 10.1093/imanum/drl039]
[5]   An algebraic approach to invariant preserving integators: The case of quadratic and Hamiltonian invariants [J].
Chartier, Philippe ;
Faou, Erwan ;
Murua, Ander .
NUMERISCHE MATHEMATIK, 2006, 103 (04) :575-590
[6]   STABILITY OF RUNGE-KUTTA METHODS FOR TRAJECTORY PROBLEMS [J].
COOPER, GJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (01) :1-13
[7]  
Davey B.A., 2002, INTRODUCTION, V2nd, DOI DOI 10.1017/CBO9780511809088
[8]   A Magnus- and Fer-Type Formula in Dendriform Algebras [J].
Ebrahimi-Fard, Kurusch ;
Manchon, Dominique .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (03) :295-316
[9]   Energy conservation with non-symplectic methods: Examples and counter-examples [J].
Faou, E ;
Hairer, E ;
Pham, TL .
BIT NUMERICAL MATHEMATICS, 2004, 44 (04) :699-709
[10]  
Hairer E., 2006, GEOMETRIC NUMERICAL