Computational cost comparison between nodal and vector finite elements in the modeling of controlled source electromagnetic data using a direct solver

被引:11
作者
da Piedade, Anderson Almeida [1 ,2 ]
Regis, Cicero [1 ,3 ]
Barriga Nunes, Carlos Mateus [1 ]
da Silva, Hilton Farias [1 ]
机构
[1] Fed Univ Para, Grad Program Geophys, Rua Augusto Correa 01, BR-66075110 Belem, Para, Brazil
[2] Fed Univ Western Para, Inst Engn & Geosci, Rua Vera Paz, BR-68040255 Santarem, PA, Brazil
[3] Natl Inst Sci & Technol Petr Geophys, Inst Geociencias, Sala 206-E,Campus Univ Ondina, BR-40170115 Salvador, BA, Brazil
关键词
Finite element; Unstructured meshes; Direct solvers; 3D numerical modeling; Electromagnetic methods; TOPOGRAPHY;
D O I
10.1016/j.cageo.2021.104901
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Finite Element method can be implemented to model geophysical electromagnetic data using one of two methodologies called Nodal and Vector Finite Elements. This paper presents a comparison between the two approaches, emphasizing memory usage and processing time, when simulating Marine Controlled Source Electromagnetic (MCSEM) data in three-dimensional models. The study is carried out using unstructured meshes and a direct solver. Computational cost information from both methodologies are gathered from four different 3D models, each emphasizing a different aspect of the problem. The results indicate that the Vector Finite Element methodology requires less memory and processing time to calculate the same data using the same mesh. Although the nodal method generates a smaller linear system than the vector method, the vector coefficient matrix is significantly more sparse than the nodal one. The greater sparsity makes the vector approach more computationally efficient, requiring less memory and running in less time than the nodal method to generate results with the same level of accuracy.
引用
收藏
页数:13
相关论文
共 29 条
[1]  
Axelsson O., 2001, CLASSICS APPL MATH, V35
[2]   Finite-element analysis of controlled-source electromagnetic induction using Coulomb-gauged potentials [J].
Badea, EA ;
Everett, ME ;
Newman, GA ;
Biro, O .
GEOPHYSICS, 2001, 66 (03) :786-799
[3]   GEMM3D: An Edge Finite Element program for 3D modeling of electromagnetic fields and sensitivities for geophysical applications [J].
Barriga Nunes, Carlos Mateus ;
Regis, Cicero .
COMPUTERS & GEOSCIENCES, 2020, 139
[4]   Parallelized 3D CSEM modeling using edge-based finite element with total field formulation and unstructured mesh [J].
Cai, Hongzhu ;
Hu, Xiangyun ;
Li, Jianhui ;
Endo, Masashi ;
Xiong, Bin .
COMPUTERS & GEOSCIENCES, 2017, 99 :125-134
[5]   3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method [J].
Cai, Hongzhu ;
Xiong, Bin ;
Han, Muran ;
Zhdanov, Michael .
COMPUTERS & GEOSCIENCES, 2014, 73 :164-176
[6]  
Chen Han-Bo, 2017, Chinese Journal of Geophysics, V60, P698, DOI 10.1002/cjg2.30079
[7]   An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration [J].
Constable, Steven ;
Srnka, Leonard J. .
GEOPHYSICS, 2007, 72 (02) :WA3-WA12
[8]   Ten years of marine CSEM for hydrocarbon exploration [J].
Constable, Steven .
GEOPHYSICS, 2010, 75 (05) :A67-A81
[9]  
da Silva NV, 2012, GEOPHYSICS, V77, pE101, DOI [10.1190/geo2010-0398.1, 10.1190/GEO2010-0398.1]
[10]   Needles: Toward Large-Scale Genomic Prediction with Marker-by-Environment Interaction [J].
De Coninck, Arne ;
De Baets, Bernard ;
Kourounis, Drosos ;
Verbosio, Fabio ;
Schenk, Olaf ;
Maenhout, Steven ;
Fostier, Jan .
GENETICS, 2016, 203 (01) :543-+