Consistent bandwidth selection for kernel binary regression

被引:10
作者
Altman, N
MacGibbon, B
机构
[1] Cornell Univ, Biometr Unit, Ithaca, NY 14853 USA
[2] Univ Quebec, Dept Math, Montreal, PQ H3G 3P8, Canada
关键词
cross-validation; C-L; nonparametric regression; U-statistics;
D O I
10.1016/S0378-3758(97)00176-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The use of nonparametric regression techniques for binary regression is a promising alternative to parametric methods. As in other nonparametric smoothing problems, the choice of smoothing parameter is critical to the performance of the estimator and the appearance of the resulting estimate. In this paper, we discuss the use of selection criteria based on estimates of squared prediction risk and show consistency and asymptotic normality of the selected bandwidths. The usefulness of the methods is explored on a data set and in a small simulation study. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:121 / 137
页数:17
相关论文
共 30 条
[1]  
ALLEN DM, 1974, TECHNOMETRICS, V16, P1307
[2]   AN INTRODUCTION TO KERNEL AND NEAREST-NEIGHBOR NONPARAMETRIC REGRESSION [J].
ALTMAN, NS .
AMERICAN STATISTICIAN, 1992, 46 (03) :175-185
[3]  
ARAGAKI A, 1997, BU1397M
[4]  
AZZALINI A, 1989, BIOMETRIKA, V76, P1
[5]  
BOWMAN AW, 1984, BIOMETRIKA, V71, P353
[6]   MARTINGALE CENTRAL LIMIT THEOREMS [J].
BROWN, BM .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (01) :59-&
[7]  
BUJA A, 1989, ANN STAT, V17, P453, DOI 10.1214/aos/1176347115
[8]  
CHU CK, 1991, STAT SCI, V6, P406
[9]   THE ABILITY OF BIOCHEMICAL AND HEMATOLOGICAL TESTS TO PREDICT RECOVERY IN PERIPARTURIENT RECUMBENT COWS [J].
CLARK, RG ;
HENDERSON, HV ;
HOGGARD, GK ;
ELLISON, RS ;
YOUNG, BJ .
NEW ZEALAND VETERINARY JOURNAL, 1987, 35 (08) :126-133
[10]  
COPAS JB, 1983, APPL STAT-J ROY ST C, V32, P25