A-site deficient perovskite with nano-socketed Ni-Fe alloy particles as highly active and durable catalyst for high-temperature CO2 electrolysis

被引:57
作者
Ding, Shaochen [1 ]
Li, Meng [1 ]
Pang, Wanying [2 ]
Hua, Bin [1 ]
Duan, Nanqi [1 ]
Zhang, Ya-Qian [1 ]
Zhang, Sheng-Nian [1 ]
Jin, Zhehui [2 ]
Luo, Jing-Li [1 ]
机构
[1] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
[2] Univ Alberta, Sch Min & Petr Engn, Dept Civil & Environm Engn, Edmonton, AB T6G 1H9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CO2; conversion; Solid oxide electrolysis cell (SOEC); In-situ exsolution; Segregation energy; TOTAL-ENERGY CALCULATIONS; FUEL-CELL; PERFORMANCE; ANODE; NANOPARTICLES; EXSOLUTION; GROWTH; EFFICIENCY; REDUCTION; METALS;
D O I
10.1016/j.electacta.2020.135683
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The solid oxide electrolysis cell (SOEC) has attracted increased attention in recent years due to its capability to reduce CO2 emissions in a highly efficient and environmentally sustainable fashion. Previous work in our group has fabricated an A-site Ce doped La0.7Sr0.3Cr0.5Fe0.5O3-delta (LSCrF) with gadolinium doped ceria (GDC) as the cathode material in SOEC by the conventional method. This composite cathode presents a satisfying electrochemical performance and good stability due to the presence of excessive oxygen vacancies and strong CO2 adsorption ability. However, its electrochemical catalytic activity is still limited by the catalyst specific area. Hence, the optimization of electrode microstructure is considered as a promising way to further improve the SOEC performance by increasing the active reaction area. In this study, highly active (La0.65Sr0.3Ce0.05)(0.9)(Cr0.5Fe0.5)(0.85)Ni0.15O3-delta (Ni-LSCeCrF)/GDC nanostructured cathode was successfully fabricated by incorporating infiltration and in situ exsolution processes. The optimized microstructure contains fine and uniformly distributed perovskite particles on GDC backbone with nano-socketed Ni-Fe alloy nanoparticles. The Ni-LSCeCrF/GDC cathode shows significantly improved electrochemical performance, CO production rate, and Faraday efficiency for CO2 reduction reaction. Furthermore, the density functional theory calculations show that Ni doping could reduce the segregation energy of Fe, revealing a new strategy of multiple elements doping to form active alloy by in situ exsolution. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 39 条
[1]   Low temperature, solution-processed perovskite solar cells and modules with an aperture area efficiency of 11% [J].
Calabro, Emanuele ;
Matteocci, Fabio ;
Palma, Alessandro Lorenzo ;
Vesce, Luigi ;
Taheri, Babak ;
Carlini, L. ;
Pis, Igor ;
Nappini, Silvia ;
Dagar, Janardan ;
Battocchio, Chiara ;
Brown, Thomas M. ;
Di Carlo, Aldo .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 185 :136-144
[2]   Correlation of Fuel Cell Anode Electrocatalytic and ex situ Catalytic Activity of Perovskites La0.75Sr0.25Cr0.5X0.5O3-δ (X = Ti, Mn, Fe, Co) [J].
Danilovic, Nemanja ;
Vincent, Adrien ;
Luo, Jing-Li ;
Chuang, Karl T. ;
Hui, Rob ;
Sanger, Alan R. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :957-965
[3]   Enhancing SOFC cathode performance by surface modification through infiltration [J].
Ding, Dong ;
Li, Xiaxi ;
Lai, Samson Yuxiu ;
Gerdes, Kirk ;
Liu, Meilin .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) :552-575
[4]   High-Performance Anode Material Sr2FeMo0.65Ni0.35O6-δ with In Situ Exsolved Nanoparticle Catalyst [J].
Du, Zhihong ;
Zhao, Hailei ;
Yi, Sha ;
Xia, Qing ;
Gong, Yue ;
Zhang, Yang ;
Cheng, Xing ;
Li, Yan ;
Gu, Lin ;
Swierczek, Konrad .
ACS NANO, 2016, 10 (09) :8660-8669
[5]   High Temperature Electrolysis in Alkaline Cells, Solid Proton Conducting Cells, and Solid Oxide Cells [J].
Ebbesen, Sune Dalgaard ;
Jensen, Soren Hojgaard ;
Hauch, Anne ;
Mogensen, Mogens Bjerg .
CHEMICAL REVIEWS, 2014, 114 (21) :10697-10734
[6]   Electrolysis of carbon dioxide in Solid Oxide Electrolysis Cells [J].
Ebbesen, Sune Dalgaard ;
Mogensen, Mogens .
JOURNAL OF POWER SOURCES, 2009, 193 (01) :349-358
[7]   Power-to-Syngas: An Enabling Technology for the Transition of the Energy System? [J].
Foit, Severin R. ;
Vinke, Izaak C. ;
de Haart, Lambertus G. J. ;
Eichel, Ruediger-A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (20) :5402-5411
[8]   A Density Functional Theory Study of Self-Regenerating Catalysts LaFe1-xMxO3-y (M = Pd, Rh, Pt) [J].
Hamada, Ikutaro ;
Uozumi, Akifumi ;
Morikawa, Yoshitada ;
Yanase, Akira ;
Katayama-Yoshida, Hiroshi .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (46) :18506-18509
[9]   Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO [J].
Hansen, Heine A. ;
Varley, Joel B. ;
Peterson, Andrew A. ;
Norskov, Jens K. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (03) :388-392
[10]   Activating p-Blocking Centers in Perovskite for Efficient Water Splitting [J].
Hua, Bin ;
Li, Meng ;
Pang, Wanying ;
Tang, Weiqiang ;
Zhao, Shuangliang ;
Jin, Zhehui ;
Zeng, Yimin ;
Amirkhiz, Babak Shalchi ;
Luo, Jing-Li .
CHEM, 2018, 4 (12) :2902-2916