MOPGO: A New Physics-Based Multi-Objective Plasma Generation Optimizer for Solving Structural Optimization Problems

被引:67
|
作者
Kumar, Sumit [1 ]
Jangir, Pradeep [2 ]
Tejani, Ghanshyam G. [3 ]
Premkumar, Manoharan [4 ]
Alhelou, Hassan Haes [5 ]
机构
[1] Univ Tasmania, Australian Maritime Coll, Coll Sci & Engn, Launceston, Tas 7248, Australia
[2] Rajasthan Rajya Vidyut Prasaran Nigam, Sikar 332025, India
[3] GSFC Univ, Sch Technol, Vadodara 391750, India
[4] Dayananda Sagar Coll Engn, Dept Elect & Elect Engn, Bengaluru 560078, India
[5] Tishreen Univ, Fac Mech & Elect Engn, Latakia 2230, Syria
关键词
Optimization; Plasmas; Energy states; Sorting; Ionization; Symbiosis; Search problems; Constraints optimization problems; crowding distance; meta-heuristics; non-dominated sorting; numerical optimization; Pareto front; structure optimization; PARTICLE SWARM OPTIMIZER; ALGORITHM; DESIGN; SEARCH;
D O I
10.1109/ACCESS.2021.3087739
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new Multi-Objective Plasma Generation Optimization (MOPGO) algorithm, and its non-dominated sorting mechanism is investigated for numerous challenging real-world structural optimization design problems. The Plasma Generation Optimization (PGO) algorithm is a recently reported physics-based algorithm inspired by the generation process of plasma in which electron movement and its energy level are based on excitation modes, de-excitation, and ionization processes. As the search progresses, a better balance between exploration and exploitation has a more significant impact on the results; thus, the crowding distance feature is incorporated in the proposed MOPGO algorithm. Also, the proposed posteriori method exercises a non-dominated sorting strategy to preserve population diversity, which is a crucial problem in multi-objective meta-heuristic algorithms. In truss design problems, minimization of the truss's mass and maximization of nodal displacement are considered objective functions. In contrast, elemental stress and discrete cross-sectional areas are assumed to be behavior and side constraints, respectively. The usefulness of MOPGO to solve complex problems is validated by eight truss-bar design problems. The efficacy of MOPGO is evaluated based on ten performance metrics. The results demonstrate that the proposed MOPGO algorithm achieves the optimal solution with less computational complexity and has a better convergence, coverage, diversity, and spread. The Pareto fronts of MOPGO are compared and contrasted with multi-objective passing vehicle search algorithm, multi-objective slime mould algorithm, multi-objective symbiotic organisms search algorithm, and multi-objective ant lion optimization algorithm. This study will be further supported with external guidance at https://premkumarmanoharan.wixsite.com/mysite.
引用
收藏
页码:84982 / 85016
页数:35
相关论文
共 50 条
  • [21] An efficient multi-objective parrot optimizer for global and engineering optimization problems
    Saad, Mohammed R.
    Emam, Marwa M.
    Houssein, Essam H.
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [22] Self-adaptive Equilibrium Optimizer for solving global, combinatorial, engineering, and Multi-Objective problems
    Houssein, Essam H.
    Celik, Emre
    Mahdy, Mohamed A.
    Ghoniem, Rania M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 195
  • [23] A cognitive approach for the multi-objective optimization of RC structural problems
    Yepes, V.
    Garcia-Segura, T.
    Moreno-Jimenez, J. M.
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2015, 15 (04) : 1024 - 1036
  • [24] An Enhanced Multi-Objective Optimizer for Stochastic Generation Optimization in Islanded Renewable Energy Microgrids
    Lakhina, Upasana
    Badruddin, Nasreen
    Elamvazuthi, Irraivan
    Jangra, Ajay
    Huy, Truong Hoang Bao
    Guerrero, Josep M. M.
    MATHEMATICS, 2023, 11 (09)
  • [25] A new multi-objective evolutionary algorithm for solving high complex multi-objective problems
    Li, Kangshun
    Yue, Xuezhi
    Kang, Lishan
    Chen, Zhangxin
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 745 - +
  • [26] Trust region based chaotic search for solving multi-objective optimization problems
    El-Shorbagy, M. A.
    EXPERT SYSTEMS, 2024, 41 (12)
  • [27] Multi-objective optimization based on an adaptive competitive swarm optimizer
    Huang, Weimin
    Zhang, Wei
    INFORMATION SCIENCES, 2022, 583 : 266 - 287
  • [28] Water cycle algorithm for solving multi-objective optimization problems
    Ali Sadollah
    Hadi Eskandar
    Ardeshir Bahreininejad
    Joong Hoon Kim
    Soft Computing, 2015, 19 : 2587 - 2603
  • [29] A New Multitask Joint Learning Framework for Expensive Multi-Objective Optimization Problems
    Luo, Jianping
    Dong, Yongfei
    Liu, Qiqi
    Zhu, Zexuan
    Cao, Wenming
    Tan, Kay Chen
    Jin, Yaochu
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (02): : 1894 - 1909
  • [30] Multi-Objective Stochastic Fractal Search: a powerful algorithm for solving complex multi-objective optimization problems
    Khalilpourazari, Soheyl
    Naderi, Bahman
    Khalilpourazary, Saman
    SOFT COMPUTING, 2020, 24 (04) : 3037 - 3066