Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet

被引:215
作者
Waskoenig, J. [1 ]
Niemi, K. [1 ]
Knake, N. [2 ]
Graham, L. M. [1 ]
Reuter, S. [1 ]
Schulz-von der Gathen, V. [2 ]
Gans, T. [1 ]
机构
[1] Queens Univ Belfast, Ctr Plasma Phys, Belfast BT7 1NN, Antrim, North Ireland
[2] Ruhr Univ Bochum, Inst Expt Phys Appl Plasma Phys 2, D-44801 Bochum, Germany
基金
英国工程与自然科学研究理事会;
关键词
CROSS-SECTIONS; GLOW-DISCHARGES; IONIZATION; TRANSITION; MODE;
D O I
10.1088/0963-0252/19/4/045018
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet is investigated using both advanced optical diagnostics and numerical simulations of the dynamic plasma chemistry. Laser spectroscopic measurements of absolute densities of ground state atomic oxygen reveal steep gradients at the interface between the plasma core and the effluent region. Spatial profiles resolving the interelectrode gap within the core plasma indicate that volume processes dominate over surface reactions. Details of the production and destruction processes are investigated in numerical simulations benchmarked by phase-resolved optical emission spectroscopy. The main production mechanisms are electron induced and hence most efficient in the vicinity of the plasma boundary sheath, where electrons are energized. The destruction is driven through chemical heavy particle reactions. The resulting spatial profile of atomic oxygen is relatively flat. The power dependence of the atomic oxygen density obtained by the numerical simulation is in very good agreement with the laser spectroscopic measurements.
引用
收藏
页数:11
相关论文
共 54 条
[1]   Space and time resolved rotational state populations and gas temperatures in an inductively coupled hydrogen RF discharge [J].
Abdel-Rahman, M ;
Gans, T ;
Schulz-von der Gathen, V ;
Döbele, HF .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2005, 14 (01) :51-60
[2]  
[Anonymous], SAND868246 SAND
[3]   Analysis of the self-pulsing operating mode of a microdischarge [J].
Aubert, Xavier ;
Bauville, Gerard ;
Guillon, Jean ;
Lacour, Bernard ;
Puech, Vincent ;
Rousseau, Antoine .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2007, 16 (01) :23-32
[4]   High frequency glow discharges at atmospheric pressure with micro-structured electrode arrays [J].
Baars-Hibbe, L ;
Sichler, P ;
Schrader, C ;
Lucas, N ;
Gericke, KH ;
Büttgenbach, S .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (04) :510-517
[5]   Environmental and biological applications of microplasmas [J].
Becker, K ;
Koutsospyros, A ;
Yin, SM ;
Christodoulatos, C ;
Abramzon, N ;
Joaquin, JC ;
Brelles-Mariño, G .
PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 :B513-B523
[6]   Cluster Issue on Microplasmas [J].
Becker, KH ;
Eden, JG ;
Schoenbach, KH .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (11)
[7]   TRANSITION BETWEEN DIFFERENT REGIMES OF RF GLOW-DISCHARGES [J].
BELENGUER, P ;
BOEUF, JP .
PHYSICAL REVIEW A, 1990, 41 (08) :4447-4459
[8]   Radio-frequency discharges in oxygen: I. Particle-based modelling [J].
Bronold, F. X. ;
Matyash, K. ;
Tskhakaya, D. ;
Schneider, R. ;
Fehske, H. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (21) :6583-6592
[9]  
*COMSOL LTD, AL109AB COMSOL LTD
[10]  
De Bleecker K, 2003, J PHYS D APPL PHYS, V36, P1826, DOI 10.1088/0022-3727/36/15/313