Convergence of a Non-interior Continuation Algorithm for the Monotone SCCP

被引:5
作者
Lu, Nan [1 ]
Huang, Zheng-Hai [1 ]
机构
[1] Tianjin Univ, Sch Sci, Dept Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Symmetric cone complementarity problem; non-interior continuation method; global linear convergence; local quadratic convergence; NONLINEAR COMPLEMENTARITY-PROBLEMS; SMOOTHING METHOD; P-PROPERTIES; TRANSFORMATIONS;
D O I
10.1007/s10255-010-0024-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that the symmetric cone complementarity problem (SCCP) is a broad class of optimization problems which contains many optimization problems as special cases. Based on a general smoothing function, we propose in this paper a non-interior continuation algorithm for solving the monotone SCCP. The proposed algorithm solves at most one system of linear equations at each iteration. By using the theory of Euclidean Jordan algebras, we show that the algorithm is globally linearly and locally quadratically convergent under suitable assumptions.
引用
收藏
页码:543 / 556
页数:14
相关论文
共 22 条
[1]   A non-interior predictor-corrector path following algorithm for the monotone linear complementarity problem [J].
Burke, J ;
Xu, S .
MATHEMATICAL PROGRAMMING, 2000, 87 (01) :113-130
[2]   A global linear and local quadratic noninterior continuation method for nonlinear complementarity problems based on Chen-Mangasarian smoothing functions [J].
Chen, BT ;
Xiu, NH .
SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (03) :605-623
[3]   A global and local superlinear continuation-smoothing method for P0 and R0 NCP or monotone NCP [J].
Chen, BT ;
Chen, XJ .
SIAM JOURNAL ON OPTIMIZATION, 1999, 9 (03) :624-645
[4]   Non-interior continuation methods for solving semidefinite complementarity problems [J].
Chen, X ;
Tseng, P .
MATHEMATICAL PROGRAMMING, 2003, 95 (03) :431-474
[5]   Improved smoothing-type methods for the solution of linear programs [J].
Engelke, S ;
Kanzow, C .
NUMERISCHE MATHEMATIK, 2002, 90 (03) :487-507
[6]  
Faraut J., 1994, Oxford Mathematical Monographs
[7]   Euclidean Jordan algebras and interior-point algorithms [J].
Faybusovich, L .
POSITIVITY, 1997, 1 (04) :331-357
[8]   Some P-properties for linear transformations on Euclidean Jordan algebras [J].
Gowda, MS ;
Sznajder, R ;
Tao, J .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 393 :203-232
[9]   The global linear and local quadratic convergence of a non-interior continuation algorithm for the LCP [J].
Huang, ZH .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2005, 25 (04) :670-684
[10]   A non-interior continuation algorithm for the P0 or P* LCP with strong global and local convergence properties [J].
Huang, ZH ;
Sun, J .
APPLIED MATHEMATICS AND OPTIMIZATION, 2005, 52 (02) :237-262