Duality for the quantum E(2) group

被引:12
作者
VanDaele, A
Woronowicz, SL
机构
[1] Katholeike Universiteit Leuven, 3001 Leuven (Heverlee)
关键词
D O I
10.2140/pjm.1996.173.375
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The quantum deformation E(mu)(2) of the group of motions of the plane on the C*-level was obtained by the second author. He also constructed the Pontryagin dual (E) over bar(mu)(2) explicitly, together with the unitary bicharacter describing this duality. In this paper we show that the dual of (E) over bar(mu)(2) is again E(mu)(2).
引用
收藏
页码:375 / 385
页数:11
相关论文
共 9 条
[1]  
KOELINK HT, 1991, THESIS LEIDEN
[2]   DUAL PAIRS OF HOPF ASTERISK-ALGEBRAS [J].
VANDAELE, A .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1993, 25 :209-230
[3]  
VANDAELE A, 1989, QUANTUM DEFORMATION
[4]  
VANDAELE A, 1989, OPERATOR A X B PLUS
[5]  
VANDAELE A, 1991, LECT NOTES
[6]   QUANTUM-E(2) GROUP AND ITS PONTRYAGIN DUAL [J].
WORONOWICZ, SL .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 23 (04) :251-263
[7]   OPERATOR EQUALITIES RELATED TO THE QUANTUM E(2) GROUP [J].
WORONOWICZ, SL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (02) :417-428
[8]   UNBOUNDED ELEMENTS AFFILIATED WITH C-STAR-ALGEBRAS AND NONCOMPACT QUANTUM GROUPS [J].
WORONOWICZ, SL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (02) :399-432
[9]  
WORONOWICZ SL, 1992, REP MATH PHYS, V31, P353, DOI DOI 10.1016/0034-4877(92)90025-V.