The Backward Problem of Stochastic Convection-Diffusion Equation

被引:2
作者
Feng, Xiaoli [1 ]
Zhao, Lizhi [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 713200, Peoples R China
基金
中国国家自然科学基金;
关键词
Backward problem; Convection-diffusion equation; Existence; Ill-posedness; Truncated regularization method; HEAT-CONDUCTION PROBLEM; PARABOLIC EQUATIONS; REGULARIZATION; STABILITY;
D O I
10.1007/s40840-022-01392-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a backward problem for the stochastic convection-diffusion equation. The source term is driven by the fraction Brownian motion. We illustrate the regularity of the mild solution and prove the instability of this problem. In order to overcome the ill-posedness, we apply a truncated regularization method to obtain a stable numerical approximation to u(x, t). Convergence estimates are presented under the a-priori parameter choice rule. Finally, some numerical experiments are given to show the effectivity of the regularization method.
引用
收藏
页码:3535 / 3560
页数:26
相关论文
共 42 条
[1]   The Navier-Stokes equations on the rotating 2-D sphere:: Gevrey regularity and asymptotic degrees of freedom [J].
Cao, CS ;
Rammaha, MA ;
Titi, ES .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (03) :341-360
[2]   A new algorithm for direct and backward problems of heat conduction equation [J].
Chang, Chih-Wen ;
Liu, Chein-Shan .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2010, 53 (23-24) :5552-5569
[3]   SOLVING THE BACKWARD HEAT CONDUCTION PROBLEM BY DATA FITTING WITH MULTIPLE REGULARIZING PARAMETERS [J].
Chen, Qun ;
Liu, Jijun .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2012, 30 (04) :418-432
[4]   The backward problem of parabolic equations with the measurements on a discrete set [J].
Cheng, Jin ;
Ke, Yufei ;
Wei, Ting .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (01) :137-144
[5]   Stability results for the heat equation backward in time [J].
Dinh Nho Hao ;
Nguyen Van Duc .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (02) :627-641
[6]  
Engl H. W., 1996, REGULARIZATION INVER
[7]   An inverse random source problem for the time fractional diffusion equation driven by a fractional Brownian motion [J].
Feng, Xiaoli ;
Li, Peijun ;
Wang, Xu .
INVERSE PROBLEMS, 2020, 36 (04)
[8]   Backward problems in time for fractional diffusion-wave equation [J].
Floridia, G. ;
Yamamoto, M. .
INVERSE PROBLEMS, 2020, 36 (12)
[9]   REMARKS ON A FRACTIONAL-TIME STOCHASTIC EQUATION [J].
Foondun, Mohammud .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (05) :2235-2247
[10]   Simultaneous identification of parameters and initial datum of reaction diffusion system by optimization method [J].
Gnanavel, S. ;
Balan, N. Barani ;
Balachandran, K. .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (16-17) :8251-8263