Spatial-Temporal Dynamic Graph Convolution Neural Network for Air Quality Prediction

被引:17
|
作者
Xiaocao, Ouyang [1 ]
Yang, Yan [1 ]
Zhang, Yiling [1 ]
Zhou, Wei [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu, Peoples R China
来源
2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN) | 2021年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
air quality prediction; graph neural networks; spatial-temporal graph;
D O I
10.1109/IJCNN52387.2021.9534167
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Air quality prediction has received widespread attention from both the governments and citizens due to its close relation to our lives. Analyzing the spatial relations and temporal trends in air quality data is essential for air quality prediction task. However, most existing approaches require a pre-defined graph structure to capture the spatial dependencies of air quality data, and thus they can not be applied when a well-defined graph structure is unavailable. Besides, those methods do not give sufficient consideration to the latent relationships among entities of the graph over time. To overcome the above limitations, we propose a Spatial-Temporal Dynamic Graph Convolution Neural Network (ST-DGCN) in this paper. Our approach develops a dynamic adjacency matrix into graph convolution layer, which extracts the potential and time-varying spatial dependencies. To jointly model the spatial and temporal correlations, we combine dynamic graph convolution with gated recurrent unit and propose a unified DGC-GRU block. Next, a residual operation is further introduced into the DGC-GRU to simultaneously handle the information from different particles. Experimental results demonstrate that the proposed method outperforms the state-of-art baselines on two real-world air quality datasets.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Dynamic graph convolution neural network based on spatial-temporal correlation for air quality prediction
    Dun, Ao
    Yang, Yuning
    Lei, Fei
    ECOLOGICAL INFORMATICS, 2022, 70
  • [2] Spatial-Temporal Dynamic Graph Convolutional Neural Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    IEEE ACCESS, 2023, 11 : 97920 - 97929
  • [3] Dynamic Spatial-Temporal Graph Neural Network for Cooling Capacity Prediction in HVDC Systems
    Sun, Hao
    Li, Shaosen
    Huang, Jianxiang
    Li, Hao
    Jing, Guanxin
    Tao, Ye
    Tian, Xincui
    ENERGIES, 2025, 18 (02)
  • [4] A multi-graph spatial-temporal attention network for air-quality prediction
    Chen, Xiaoxia
    Hu, Yue
    Dong, Fangyan
    Chen, Kewei
    Xia, Hanzhong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 181 : 442 - 451
  • [5] Multi-View Spatial-Temporal Graph Neural Network for Traffic Prediction
    Li, He
    Jin, Duo
    Li, XueJiao
    Huang, HongJie
    Yun, JinPeng
    Huang, LongJi
    COMPUTER JOURNAL, 2023, 66 (10) : 2393 - 2408
  • [6] A novel spatial-temporal graph convolution network based on temporal embedding graph structure learning for multivariate time series prediction
    Lei, Tianyang
    Li, Jichao
    Yang, Kewei
    Gong, Chang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 141
  • [7] Global-Local Feature Learning via Dynamic Spatial-Temporal Graph Neural Network in Meteorological Prediction
    Chen, Yibi
    Li, Kenli
    Yeo, Chai Kiat
    Li, Keqin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 6280 - 6292
  • [8] Sparse Transformer Network With Spatial-Temporal Graph for Pedestrian Trajectory Prediction
    Gao, Long
    Gu, Xiang
    Chen, Feng
    Wang, Jin
    IEEE ACCESS, 2024, 12 : 144725 - 144737
  • [9] A Deep Spatial-Temporal Ensemble Model for Air Quality Prediction
    Wang, Junshan
    Song, Guojie
    NEUROCOMPUTING, 2018, 314 : 198 - 206
  • [10] Network Representation Learning Method Based on Spatial-Temporal Graph in Dynamic Network
    Cheng, Xiaotao
    Ji, Lixin
    Yin, Ying
    Huang, Ruiyang
    PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 196 - 200