Machine Learning in Body Composition Analysis

被引:11
作者
Higgins, Michelle, I [1 ]
Marquardt, J. Peter [2 ]
Master, Viraj A. [1 ]
Fintelmann, Florian J. [2 ]
Psutka, Sarah P. [3 ]
机构
[1] Emory Univ, Dept Urol, Sch Med, Atlanta, GA USA
[2] Massachusetts Gen Hosp, Dept Radiol, Boston, MA USA
[3] Univ Washington, Dept Urol, Seattle, WA 98195 USA
关键词
SKELETAL-MUSCLE; MASS;
D O I
10.1016/j.euf.2021.03.013
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Body composition analysis (BCA) generates objective anthropometric data that can inform prognostication and treatment decisions across a wide variety of urologic conditions. A patient's body composition, specifically muscle and adipose tissue mass, may be characterized via segmentation of cross-sectional images (computed tomography, magnetic resonance imaging) obtained as part of routine clinical care. Unfortunately, conventional semi-automated segmentation techniques are time- and resource-intensive, precluding translation into clinical practice. Machine learning (ML) offers the potential to automate and scale rapid and accurate BCA. To date, ML for BCA has relied on algorithms called convolutional neural networks designed to detect and analyze images in ways similar to human neuronal connections. This mini review provides a clinically oriented overview of ML and its use in BCA. We address current limitations and future directions for translating ML and BCA into clinical practice. Patient Summary: Body composition analysis is the measurement of muscle and fat in your body based on analysis of computed tomography or magnetic resonance imaging scans. We discuss the use of machine learning to automate body composition analysis. The information provided can be used to guide shared decision-making and to help in identifying the best therapy option. (C) 2021 Published by Elsevier B.V. on behalf of European Association of Urology.
引用
收藏
页码:713 / 716
页数:4
相关论文
共 15 条
[1]  
Dabiri S, 2020, COMPUT MED IMAG GRAP, V85, DOI [10.1016.j.compmedimag.2020.101776, 10.1016/j.compmedimag.2020.101776]
[2]   Definition and classification of cancer cachexia: an international consensus [J].
Fearon, Kenneth ;
Strasser, Florian ;
Anker, Stefan D. ;
Bosaeus, Ingvar ;
Bruera, Eduardo ;
Fainsinger, Robin L. ;
Jatoi, Aminah ;
Loprinzi, Charles ;
MacDonald, Neil ;
Mantovani, Giovanni ;
Davis, Mellar ;
Muscaritoli, Maurizio ;
Ottery, Faith ;
Radbruch, Lukas ;
Ravasco, Paula ;
Walsh, Declan ;
Wilcock, Andrew ;
Kaasa, Stein ;
Baracos, Vickie E. .
LANCET ONCOLOGY, 2011, 12 (05) :489-495
[3]   Evaluation of automated computed tomography segmentation to assess body composition and mortality associations in cancer patients [J].
Feliciano, Elizabeth M. Cespedes ;
Popuri, Karteek ;
Cobzas, Dana ;
Baracos, Vickie E. ;
Beg, Mirza Faisal ;
Khan, Arafat Dad ;
Ma, Cydney ;
Chow, Vincent ;
Prado, Carla M. ;
Xiao, Jingjie ;
Liu, Vincent ;
Chen, Wendy Y. ;
Meyerhardt, Jeffrey ;
Albers, Kathleen B. ;
Caan, Bette J. .
JOURNAL OF CACHEXIA SARCOPENIA AND MUSCLE, 2020, 11 (05) :1258-1269
[4]   Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment [J].
Hemke, Robert ;
Buckless, Colleen G. ;
Tsao, Andrew ;
Wang, Benjamin ;
Torriani, Martin .
SKELETAL RADIOLOGY, 2020, 49 (03) :387-395
[5]   Quantification of body composition in renal cell carcinoma patients: Comparing computed tomography and magnetic resonance imaging measurements [J].
Higgins, Michelle, I ;
Martini, Dylan J. ;
Patil, Dattatraya H. ;
Steele, Sean ;
Evans, Sean ;
Petrinec, Benjamin P. ;
Psutka, Sarah P. ;
Sekhar, Aarti ;
Bilen, Mehmet Asim ;
Master, Viraj A. .
EUROPEAN JOURNAL OF RADIOLOGY, 2020, 132
[6]   Population-Scale CT-based Body Composition Analysis of a Large Outpatient Population Using Deep Learning to Derive Age-, Sex-, and Race-specific Reference Curves [J].
Magudia, Kirti ;
Bridge, Christopher P. ;
Bay, Camden P. ;
Babic, Ana ;
Fintelmann, Florian J. ;
Troschel, Fabian M. ;
Miskin, Nityanand ;
Wrobel, William C. ;
Brais, Lauren K. ;
Andriole, Katherine P. ;
Wolpin, Brian M. ;
Rosenthal, Michael H. .
RADIOLOGY, 2021, 298 (02) :319-329
[7]   Cancer Cachexia in the Age of Obesity: Skeletal Muscle Depletion Is a Powerful Prognostic Factor, Independent of Body Mass Index [J].
Martin, Lisa ;
Birdsell, Laura ;
MacDonald, Neil ;
Reiman, Tony ;
Clandinin, M. Thomas ;
McCargar, Linda J. ;
Murphy, Rachel ;
Ghosh, Sunita ;
Sawyer, Michael B. ;
Baracos, Vickie E. .
JOURNAL OF CLINICAL ONCOLOGY, 2013, 31 (12) :1539-1547
[8]   A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care [J].
Mourtzakis, Marina ;
Prado, Carla M. M. ;
Lieffers, Jessica R. ;
Reiman, Tony ;
McCargar, Linda J. ;
Baracos, Vickie E. .
APPLIED PHYSIOLOGY NUTRITION AND METABOLISM, 2008, 33 (05) :997-1006
[9]   Body Composition Analysis of Computed Tomography Scans in Clinical Populations: The Role of Deep Learning [J].
Paris, Michael T. .
LIFESTYLE GENOMICS, 2020, 13 (01) :28-31
[10]   Reliable and robust method for abdominal muscle mass quantification using CT/MRI: An explorative study in healthy subjects [J].
Park, Jisuk ;
Gil, Jea Ryung ;
Shin, Youngbin ;
Won, Sang Eun ;
Huh, Jimi ;
You, Myung-Won ;
Park, Hyo Jung ;
Sung, Yu Sub ;
Kim, Kyung Won .
PLOS ONE, 2019, 14 (09)