Performance comparison of Yb:YAG ceramics and crystal gain material in a large-area, high-energy, high average-power diode-pumped laser

被引:18
作者
Divoky, M. [1 ]
Pilar, J. [1 ]
Hanus, M. [1 ]
Navratil, P. [1 ]
Sawicka-Chyla, M. [1 ]
De Vido, M. [2 ]
Phillips, P. J. [2 ]
Ertel, K. [2 ]
Butcher, T. [2 ]
Fibrich, M. [3 ]
Green, J. T. [3 ]
Koselja, M. [3 ]
Preclikova, J. [4 ]
Kubat, J. [4 ]
Houzvicka, J. [4 ]
Rus, B. [3 ]
Collier, J. [2 ]
Lucianetti, A. [1 ]
Mocek, T. [1 ]
机构
[1] Czech Acad Sci, Inst Phys, HiLASE Ctr, Za Radnici 828, Dolni Brezany 25241, Czech Republic
[2] STFC Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England
[3] Czech Acad Sci, Inst Phys, Extreme Light Infrastruct Beamlines, Za Radnici 835, Dolni Brezany 25241, Czech Republic
[4] Spol Sro, CRYTUR, Na Lukach 2283, CZ-51101 Turnov, Czech Republic
基金
欧盟地平线“2020”;
关键词
AMPLIFIED SPONTANEOUS EMISSION;
D O I
10.1364/OE.379713
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We compare for the first time the influence of different Yb:YAG gain media on the performance of a large-area, high average-power laser system with an output energy of up to 6 J. Monocrystalline slabs grown by a new technique without central growth defect are compared with ceramics. Small signal gain, maximum output energy and thermal lensing are compared for ceramic slabs with co-sintered amplified spontaneous emission (ASE) absorber cladding, monocrystalline slab with and without optically bonded ASE absorber cladding, and surface structured monocrystalline slabs. We show that these large monocrystals with optically bonded absorber cladding have similar performance to cladded ceramics, so far the only material for high-energy Yb:YAG lasers. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:3636 / 3646
页数:11
相关论文
共 15 条
[1]   A review on the application of peening processes for surface treatment [J].
Azhari, A. ;
Sulaiman, S. ;
Rao, A. K. Prasada .
2ND INTERNATIONAL MANUFACTURING ENGINEERING CONFERENCE AND 3RD ASIA-PACIFIC CONFERENCE ON MANUFACTURING SYSTEMS (IMEC-APCOMS 2015), 2016, 114
[2]   Yb3+:YAG crystal growth with controlled doping distribution [J].
Azrakantsyan, M. ;
Albach, D. ;
Ananyan, N. ;
Gevorgyan, V. ;
Chanteloup, J. -C. .
OPTICAL MATERIALS EXPRESS, 2012, 2 (01) :20-30
[3]   100 J-level nanosecond pulsed diode pumped solid state laser [J].
Banerjee, Saumyabrata ;
Mason, Paul D. ;
Ertel, Klaus ;
Phillips, P. Jonathan ;
De Vido, Mariastefania ;
Chekhlov, Oleg ;
Divoky, Martin ;
Pilar, Jan ;
Smith, Jodie ;
Butcher, Thomas ;
Lintern, Andrew ;
Tomlinson, Steph ;
Shaikh, Waseem ;
Hooker, Chris ;
Lucianetti, Antonio ;
Hernandez-Gomez, Cristina ;
Mocek, Tomas ;
Edwards, Chris ;
Collier, John L. .
OPTICS LETTERS, 2016, 41 (09) :2089-2092
[4]   High-average-power femto-petawatt laser pumped by the Mercury laser facility [J].
Bayramian, Andy ;
Armstrong, James ;
Beer, Glenn ;
Campbell, Rob ;
Chai, Bruce ;
Cross, Robert ;
Erlandson, Alvin ;
Fei, Yting ;
Freitas, Barry ;
Kent, Robert ;
Menapace, Joseph ;
Molander, William ;
Schaffers, Kathleen ;
Siders, Craig ;
Sutton, Steve ;
Tassano, John ;
Telford, Steve ;
Ebbers, Christopher ;
Caird, John ;
Barty, Christopher .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2008, 25 (07) :B57-B61
[5]  
Brenner C. M., 2016, PLASMA PHYS CONTROL, V58, P1
[6]   14 J/2 Hz Yb3+:YAG diode pumped solid state laser chain [J].
Goncalves-Novo, Thierry ;
Albach, Daniel ;
Vincent, Bernard ;
Arzakantsyan, Mikayel ;
Chanteloup, Jean-Christophe .
OPTICS EXPRESS, 2013, 21 (01) :855-866
[7]  
Haefner C. L., 2017, P SOC PHOTO-OPT INS, V10241
[8]   50 mm-aperture Nd:LuAG ceramic nanosecond laser amplifier producing 10 J at 10 Hz [J].
Liu, Tinghao ;
Feng, Tao ;
Sui, Zhan ;
Liu, Qiang ;
Gong, Mali ;
Zhang, Long ;
Jiang, Benxue ;
Fu, Xing .
OPTICS EXPRESS, 2019, 27 (11) :15595-15603
[9]   12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression [J].
Liu, Tinghao ;
Sui, Zhan ;
Chen, Lin ;
Li, Zhupeng ;
Liu, Qiang ;
Gong, Mali ;
Fu, Xing .
OPTICS EXPRESS, 2017, 25 (18) :21981-21992
[10]  
Mallozi P.J., 1974, U.S. Patent, Patent No. [3,850,698, 3850698]