The Critical Dimension for a Fourth Order Elliptic Problem with Singular Nonlinearity

被引:33
作者
Cowan, Craig [1 ]
Esposito, Pierpaolo [2 ]
Ghoussoub, Nassif [3 ]
Moradifam, Amir [4 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
[3] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[4] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
关键词
EXPONENTIAL NONLINEARITY; DIELECTRIC-PROPERTIES; COMPACTNESS; MEMS;
D O I
10.1007/s00205-010-0367-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the regularity of the extremal solution of the semilinear biharmonic equation Delta(2)u = lambda/(1-u)(2), which models a simple micro-electromechanical system (MEMS) device on a ball B subset of R(N), under Dirichlet boundary conditions u = partial derivative(v)u = 0 on partial derivative B. We complete here the results of Lin and Yang [14] regarding the identification of a "pull-in voltage" lambda* > 0 such that a stable classical solution u(lambda) with 0 < u(lambda) < 1 exists for lambda is an element of (0, lambda*), while there is none of any kind when lambda > lambda*. Our main result asserts that the extremal solution u(lambda*) is regular (supB u(lambda*) < 1) provided N <= 8 while u(lambda*) is singular (sup(B) u(lambda*) = 1) for N >= 9, in which case 1 - C(0)vertical bar x vertical bar(4/3) <= u(lambda*)(x) <= 1 - vertical bar x vertical bar(4/3) on the unit ball, where C(0) := (lambda*/<(lambda)over bar>)(1/3) and (lambda)over bar> := 8/9 (N - 2/3) (N - 8/3).
引用
收藏
页码:763 / 787
页数:25
相关论文
共 20 条
[1]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[2]  
[Anonymous], 1980, Commun. Partial Differ. Equ
[3]  
[Anonymous], 1905, Rend. Circ. Mat. Palermo
[4]  
[Anonymous], 2002, Modeling MEMS and NEMS
[5]   A semilinear fourth order elliptic problem with exponential nonlinearity [J].
Arioli, G ;
Gazzola, F ;
Grunau, HC ;
Mitidieri, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (04) :1226-1258
[6]  
Cassani D, 2009, ADV NONLINEAR STUD, V9, P177
[7]   Stable solutions for the bilaplacian with exponential nonlinearity [J].
Davila, Juan ;
Dupaigne, Louis ;
Guerra, Ignacio ;
Montenegro, Marcelo .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (02) :565-592
[8]   Multiplicity of solutions for a fourth order problem with exponential nonlinearity [J].
Davila, Juan ;
Flores, Isabel ;
Guerra, Ignacio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (11) :3136-3162
[9]  
Esposito P, 2009, Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS
[10]   Compactness of a nonlinear eigenvalue problem with a singular nonlinearity [J].
Esposito, Pierpaolo .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2008, 10 (01) :17-45