Control strategies for active lower extremity prosthetics and orthotics: a review

被引:627
作者
Tucker, Michael R. [1 ]
Olivier, Jeremy [2 ]
Pagel, Anna [3 ]
Bleuler, Hannes [2 ]
Bouri, Mohamed [2 ]
Lambercy, Olivier [1 ]
Millan, Jose del R. [4 ]
Riener, Robert [3 ,5 ]
Vallery, Heike [3 ,6 ]
Gassert, Roger [1 ]
机构
[1] ETH, Dept Hlth Sci & Technol, Rehabilitat Engn Lab, Zurich, Switzerland
[2] Ecole Polytech Fed Lausanne, Inst Microengn, Robot Syst Lab, CH-1015 Lausanne, Switzerland
[3] ETH, Dept Hlth Sci & Technol, Sensory Motor Syst Lab, Zurich, Switzerland
[4] Ecole Polytech Fed Lausanne, Inst Bioengn, Ctr Neuroprosthet, Defitech Chair Noninvas Brain Machine Interface, CH-1015 Lausanne, Switzerland
[5] Univ Zurich, Balgrist Univ Hosp, Spinal Cord Injury Ctr, Fac Med, Zurich, Switzerland
[6] Delft Univ Technol, Dept BioMech Engn, Fac Mech Maritime & Mat Engn, Delft, Netherlands
基金
瑞士国家科学基金会;
关键词
Prosthetic; Orthotic; Exoskeleton; Control architecture; Intention recognition; Activity mode recognition; Volitional control; Shared control; Finite-state machine; Electromyography; Sensory feedback; Sensory substitution; Seamless integration; Sensory-motor control; Rehabilitation robotics; Bionic; Biomechatronic; Legged locomotion; CENTRAL PATTERN GENERATOR; TIME MYOELECTRIC CONTROL; ANKLE-FOOT PROSTHESIS; OF-THE-ART; INTENT RECOGNITION; NEURAL-CONTROL; SENSORY FEEDBACK; REHABILITATION ROBOTS; CONTROL ALGORITHMS; VOLITIONAL CONTROL;
D O I
10.1186/1743-0003-12-1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Technological advancements have led to the development of numerous wearable robotic devices for the physical assistance and restoration of human locomotion. While many challenges remain with respect to the mechanical design of such devices, it is at least equally challenging and important to develop strategies to control them in concert with the intentions of the user. This work reviews the state-of-the-art techniques for controlling portable active lower limb prosthetic and orthotic (P/O) devices in the context of locomotive activities of daily living (ADL), and considers how these can be interfaced with the user's sensory-motor control system. This review underscores the practical challenges and opportunities associated with P/O control, which can be used to accelerate future developments in this field. Furthermore, this work provides a classification scheme for the comparison of the various control strategies. As a novel contribution, a general framework for the control of portable gait-assistance devices is proposed. This framework accounts for the physical and informatic interactions between the controller, the user, the environment, and the mechanical device itself. Such a treatment of P/Os - not as independent devices, but as actors within an ecosystem - is suggested to be necessary to structure the next generation of intelligent and multifunctional controllers. Each element of the proposed framework is discussed with respect to the role that it plays in the assistance of locomotion, along with how its states can be sensed as inputs to the controller. The reviewed controllers are shown to fit within different levels of a hierarchical scheme, which loosely resembles the structure and functionality of the nominal human central nervous system (CNS). Active and passive safety mechanisms are considered to be central aspects underlying all of P/O design and control, and are shown to be critical for regulatory approval of such devices for real-world use. The works discussed herein provide evidence that, while we are getting ever closer, significant challenges still exist for the development of controllers for portable powered P/O devices that can seamlessly integrate with the user's neuromusculoskeletal system and are practical for use in locomotive ADL.
引用
收藏
页数:29
相关论文
共 241 条
[1]   Inertia Compensation Control of a One-Degree-of-Freedom Exoskeleton for Lower-Limb Assistance: Initial Experiments [J].
Aguirre-Ollinger, Gabriel ;
Colgate, J. Edward ;
Peshkin, Michael A. ;
Goswami, Ambarish .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2012, 20 (01) :68-77
[2]   Mobile ankle and knee perturbator [J].
Andersen, JB ;
Sinkjær, T .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2003, 50 (10) :1208-1211
[3]  
[Anonymous], SYSTEM SAFETY ENG MA
[4]  
[Anonymous], 134822014 ISO
[5]  
[Anonymous], COMP WHEELCH INT CWI
[6]  
[Anonymous], HAZOP HAZAN NOTES ID
[7]  
[Anonymous], J OSAKA ROSAI HOSP
[8]  
[Anonymous], 2012 ANN REP
[9]  
[Anonymous], EKSO BION EKS PROD I
[10]  
[Anonymous], ONL TRAIN RES CLIN