Learning Value Functions in Interactive Evolutionary Multiobjective Optimization

被引:60
|
作者
Branke, Juergen [1 ]
Greco, Salvatore [2 ,3 ]
Slowinski, Roman [4 ,5 ]
Zielniewicz, Piotr [4 ]
机构
[1] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[2] Univ Catania, Dept Econ & Business, I-95124 Catania, Italy
[3] Univ Portsmouth, Portsmouth Business Sch, Portsmouth PO1 2UP, Hants, England
[4] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[5] Polish Acad Sci, Syst Res Inst, PL-01447 Warshaw, Poland
关键词
Evolutionary multiobjective optimization; interactive procedure; ordinal regression; preference learning; GENETIC ALGORITHM; DECISION-MAKING; PREFERENCES; MODEL; SET;
D O I
10.1109/TEVC.2014.2303783
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an interactive multiobjective evolutionary algorithm (MOEA) that attempts to learn a value function capturing the users' true preferences. At regular intervals, the user is asked to rank a single pair of solutions. This information is used to update the algorithm's internal value function model, and the model is used in subsequent generations to rank solutions incomparable according to dominance. This speeds up evolution toward the region of the Pareto front that is most desirable to the user. We take into account the most general additive value function as a preference model and we empirically compare different ways to identify the value function that seems to be the most representative with respect to the given preference information, different types of user preferences, and different ways to use the learned value function in the MOEA. Results on a number of different scenarios suggest that the proposed algorithm works well over a range of benchmark problems and types of user preferences.
引用
收藏
页码:88 / 102
页数:15
相关论文
共 50 条
  • [41] Decision Making in Evolutionary Multiobjective Clustering: A Machine Learning Challenge
    Garza-Fabre, Mario
    Sanchez-Martinez, Aaron L.
    Aldana-Bobadilla, Edwin
    Landa, Ricardo
    IEEE ACCESS, 2022, 10 : 117281 - 117303
  • [42] Closed-Loop Evolutionary Multiobjective Optimization
    Knowles, Joshua
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2009, 4 (03) : 77 - 91
  • [43] Evolutionary multiobjective optimization in noisy problem environments
    Eskandari, Hamidreza
    Geiger, Christopher D.
    JOURNAL OF HEURISTICS, 2009, 15 (06) : 559 - 595
  • [44] A hierarchical evolutionary algorithm for multiobjective optimization in IMRT
    Holdsworth, Clay
    Kim, Minsun
    Liao, Jay
    Phillips, Mark H.
    MEDICAL PHYSICS, 2010, 37 (09) : 4986 - 4997
  • [45] CYLINDRICAL CONSTRAINT EVOLUTIONARY ALGORITHM FOR MULTIOBJECTIVE OPTIMIZATION
    Erfani, Tohid
    Utyuzhnikov, Sergei V.
    ECTA 2011/FCTA 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION THEORY AND APPLICATIONS AND INTERNATIONAL CONFERENCE ON FUZZY COMPUTATION THEORY AND APPLICATIONS, 2011, : 184 - 189
  • [46] Evolutionary multiobjective optimization of Topological Active Nets
    Novo, J.
    Penedo, M. G.
    Santos, J.
    PATTERN RECOGNITION LETTERS, 2010, 31 (13) : 1781 - 1794
  • [47] Robust indicator-based algorithm for interactive evolutionary multiple objective optimization
    Tomczyk, Michal K.
    Kadzinski, Milosz
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 629 - 637
  • [48] Scalarizing Functions in Bayesian Multiobjective Optimization
    Chugh, Tinkle
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [49] Adaptive Memetic Computing for Evolutionary Multiobjective Optimization
    Shim, Vui Ann
    Tan, Kay Chen
    Tang, Huajin
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (04) : 610 - 621
  • [50] Evolutionary Multiobjective Optimization: Principles, Procedures, and Practices
    Deb, Kalyanmoy
    INTERNATIONAL CONFERENCE ON MODELING, OPTIMIZATION, AND COMPUTING, 2010, 1298 : 12 - 17