Learning Value Functions in Interactive Evolutionary Multiobjective Optimization

被引:60
|
作者
Branke, Juergen [1 ]
Greco, Salvatore [2 ,3 ]
Slowinski, Roman [4 ,5 ]
Zielniewicz, Piotr [4 ]
机构
[1] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[2] Univ Catania, Dept Econ & Business, I-95124 Catania, Italy
[3] Univ Portsmouth, Portsmouth Business Sch, Portsmouth PO1 2UP, Hants, England
[4] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[5] Polish Acad Sci, Syst Res Inst, PL-01447 Warshaw, Poland
关键词
Evolutionary multiobjective optimization; interactive procedure; ordinal regression; preference learning; GENETIC ALGORITHM; DECISION-MAKING; PREFERENCES; MODEL; SET;
D O I
10.1109/TEVC.2014.2303783
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an interactive multiobjective evolutionary algorithm (MOEA) that attempts to learn a value function capturing the users' true preferences. At regular intervals, the user is asked to rank a single pair of solutions. This information is used to update the algorithm's internal value function model, and the model is used in subsequent generations to rank solutions incomparable according to dominance. This speeds up evolution toward the region of the Pareto front that is most desirable to the user. We take into account the most general additive value function as a preference model and we empirically compare different ways to identify the value function that seems to be the most representative with respect to the given preference information, different types of user preferences, and different ways to use the learned value function in the MOEA. Results on a number of different scenarios suggest that the proposed algorithm works well over a range of benchmark problems and types of user preferences.
引用
收藏
页码:88 / 102
页数:15
相关论文
共 50 条
  • [31] A Survey on Evolutionary Constrained Multiobjective Optimization
    Liang, Jing
    Ban, Xuanxuan
    Yu, Kunjie
    Qu, Boyang
    Qiao, Kangjia
    Yue, Caitong
    Chen, Ke
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (02) : 201 - 221
  • [32] Preferences and their application in evolutionary multiobjective optimization
    Cvetkovic, D
    Parmee, IC
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) : 42 - 57
  • [33] A Hybrid Evolutionary Algorithm for Multiobjective Optimization
    Ahn, Chang Wook
    Kim, Hyun-Tae
    Kim, Yehoon
    An, Jinung
    2009 FOURTH INTERNATIONAL CONFERENCE ON BIO-INSPIRED COMPUTING: THEORIES AND APPLICATIONS, PROCEEDINGS, 2009, : 19 - +
  • [34] Incremental learning-inspired mating restriction strategy for Evolutionary Multiobjective Optimization
    Liu, Tingrui
    Tan, Liguo
    Li, Xin
    Song, Shenmin
    APPLIED SOFT COMPUTING, 2022, 127
  • [35] Multiobjective Data Mining from Solutions by Evolutionary Multiobjective Optimization
    Nojima, Yusuke
    Tanigaki, Yuki
    Ishibuchi, Hisao
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 617 - 624
  • [36] Road Safety Resource Allocation Using Interactive Multiobjective Optimization
    Augeri, Maria Grazia
    Greco, Salvatore
    Distefano, Natalia
    Leonardi, Salvatore
    EUROPEAN TRANSPORT-TRASPORTI EUROPEI, 2021, (84):
  • [37] Indicator-based Selection in Evolutionary Multiobjective Optimization Algorithms Based On the Desirability Index
    Trautmann, Heike
    Wagner, Tobias
    Biermann, Dirk
    Weihs, Claus
    JOURNAL OF MULTI-CRITERIA DECISION ANALYSIS, 2013, 20 (5-6) : 319 - 337
  • [38] Incorporating the Notion of Relative Importance of Objectives in Evolutionary Multiobjective Optimization
    Rachmawati, Lily
    Srinivasan, Dipti
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (04) : 530 - 546
  • [39] Pareto navigator for interactive nonlinear multiobjective optimization
    Eskelinen, Petri
    Miettinen, Kaisa
    Klamroth, Kathrin
    Hakanen, Jussi
    OR SPECTRUM, 2010, 32 (01) : 211 - 227
  • [40] Multiobjective Environment/Economic Power Dispatch Using Evolutionary Multiobjective Optimization
    Ma, Shijing
    Wang, Yunhe
    Lv, Yinghua
    IEEE ACCESS, 2018, 6 : 13066 - 13074