Learning Value Functions in Interactive Evolutionary Multiobjective Optimization

被引:60
|
作者
Branke, Juergen [1 ]
Greco, Salvatore [2 ,3 ]
Slowinski, Roman [4 ,5 ]
Zielniewicz, Piotr [4 ]
机构
[1] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[2] Univ Catania, Dept Econ & Business, I-95124 Catania, Italy
[3] Univ Portsmouth, Portsmouth Business Sch, Portsmouth PO1 2UP, Hants, England
[4] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[5] Polish Acad Sci, Syst Res Inst, PL-01447 Warshaw, Poland
关键词
Evolutionary multiobjective optimization; interactive procedure; ordinal regression; preference learning; GENETIC ALGORITHM; DECISION-MAKING; PREFERENCES; MODEL; SET;
D O I
10.1109/TEVC.2014.2303783
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an interactive multiobjective evolutionary algorithm (MOEA) that attempts to learn a value function capturing the users' true preferences. At regular intervals, the user is asked to rank a single pair of solutions. This information is used to update the algorithm's internal value function model, and the model is used in subsequent generations to rank solutions incomparable according to dominance. This speeds up evolution toward the region of the Pareto front that is most desirable to the user. We take into account the most general additive value function as a preference model and we empirically compare different ways to identify the value function that seems to be the most representative with respect to the given preference information, different types of user preferences, and different ways to use the learned value function in the MOEA. Results on a number of different scenarios suggest that the proposed algorithm works well over a range of benchmark problems and types of user preferences.
引用
收藏
页码:88 / 102
页数:15
相关论文
共 50 条
  • [11] On Benchmarking Interactive Evolutionary Multiobjective Algorithms
    Shavarani, Seyed Mahdi
    Lopez-Ibanez, Manuel
    Knowles, Joshua
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (04) : 1084 - 1098
  • [12] Interactive Fuzzy Modeling by Evolutionary Multiobjective Optimization with User Preference
    Nojima, Yusuke
    Ishibuchi, Hisao
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1839 - 1844
  • [13] Interactive Evolutionary Multiobjective Optimization Using Robust Ordinal Regression
    Branke, Juergen
    Greco, Salvatore
    Slowinski, Roman
    Zielniewicz, Piotr
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION: 5TH INTERNATIONAL CONFERENCE, EMO 2009, 2009, 5467 : 554 - +
  • [14] Using Choquet integral as preference model in interactive evolutionary multiobjective optimization
    Branke, Juergen
    Corrente, Salvatore
    Greco, Salvatore
    Slowinski, Roman
    Zielniewicz, Piotr
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 250 (03) : 884 - 901
  • [15] An Orthogonal Evolutionary Algorithm With Learning Automata for Multiobjective Optimization
    Dai, Cai
    Wang, Yuping
    Ye, Miao
    Xue, Xingsi
    Liu, Hailin
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (12) : 3306 - 3319
  • [16] Constraint Handling in Multiobjective Evolutionary Optimization
    Woldesenbet, Yonas Gebre
    Yen, Gary G.
    Tessema, Biruk G.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (03) : 514 - 525
  • [17] An interactive algorithm for multiobjective ranking for underlying linear and quasiconcave value functions
    Ozturk, Diclehan Tezcaner
    Koksalan, Murat
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2021, 28 (06) : 3513 - 3535
  • [18] Multiobjective combinatorial optimization with interactive evolutionary algorithms: The case of facility location problems
    Barbati, Maria
    Corrente, Salvatore
    Greco, Salvatore
    EURO JOURNAL ON DECISION PROCESSES, 2024, 12
  • [19] Difficulty in Evolutionary Multiobjective Optimization of Discrete Objective Functions with Different Granularities
    Ishibuchi, Hisao
    Yamane, Masakazu
    Nojima, Yusuke
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, EMO 2013, 2013, 7811 : 230 - 245
  • [20] Effects of Noisy Multiobjective Test Functions Applied to Evolutionary Optimization Algorithms
    Ryter, Remo
    Hanne, Thomas
    Dornberger, Rolf
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2020, 11 (03) : 128 - 134