Learning Value Functions in Interactive Evolutionary Multiobjective Optimization

被引:63
作者
Branke, Juergen [1 ]
Greco, Salvatore [2 ,3 ]
Slowinski, Roman [4 ,5 ]
Zielniewicz, Piotr [4 ]
机构
[1] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[2] Univ Catania, Dept Econ & Business, I-95124 Catania, Italy
[3] Univ Portsmouth, Portsmouth Business Sch, Portsmouth PO1 2UP, Hants, England
[4] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[5] Polish Acad Sci, Syst Res Inst, PL-01447 Warshaw, Poland
关键词
Evolutionary multiobjective optimization; interactive procedure; ordinal regression; preference learning; GENETIC ALGORITHM; DECISION-MAKING; PREFERENCES; MODEL; SET;
D O I
10.1109/TEVC.2014.2303783
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an interactive multiobjective evolutionary algorithm (MOEA) that attempts to learn a value function capturing the users' true preferences. At regular intervals, the user is asked to rank a single pair of solutions. This information is used to update the algorithm's internal value function model, and the model is used in subsequent generations to rank solutions incomparable according to dominance. This speeds up evolution toward the region of the Pareto front that is most desirable to the user. We take into account the most general additive value function as a preference model and we empirically compare different ways to identify the value function that seems to be the most representative with respect to the given preference information, different types of user preferences, and different ways to use the learned value function in the MOEA. Results on a number of different scenarios suggest that the proposed algorithm works well over a range of benchmark problems and types of user preferences.
引用
收藏
页码:88 / 102
页数:15
相关论文
共 52 条
[21]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[22]   An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions [J].
Deb, Kalyanmoy ;
Sinha, Ankur ;
Korhonen, Pekka J. ;
Wallenius, Jyrki .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (05) :723-739
[23]  
Figueira J, 2005, INT SER OPER RES MAN, V78, P133, DOI 10.1007/0-387-23081-5_4
[24]   Building a set of additive value functions representing a reference preorder and intensities of preference: GRIP method [J].
Figueira, Jose Rui ;
Greco, Salvatore ;
Slowinski, Roman .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 195 (02) :460-486
[25]  
FONSECA CM, 1993, PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P416
[26]   Interactive evolutionary multi-objective optimization for quasi-concave preference functions [J].
Fowler, John W. ;
Gel, Esma S. ;
Koksalan, Murat M. ;
Korhonen, Pekka ;
Marquis, Jon L. ;
Wallenius, Jyrki .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 206 (02) :417-425
[27]  
Gong MG, 2011, GECCO-2011: PROCEEDINGS OF THE 13TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P721
[28]   Rough sets theory for multicriteria decision analysis [J].
Greco, S ;
Matarazzo, B ;
Slowinski, R .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2001, 129 (01) :1-47
[29]   Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions [J].
Greco, Salvatore ;
Mousseau, Vincent ;
Slowiniski, Roman .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 191 (02) :416-435
[30]  
Greenwood G.W., 1997, FDN GENETIC ALGORITH, P437