Learning Value Functions in Interactive Evolutionary Multiobjective Optimization

被引:60
|
作者
Branke, Juergen [1 ]
Greco, Salvatore [2 ,3 ]
Slowinski, Roman [4 ,5 ]
Zielniewicz, Piotr [4 ]
机构
[1] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[2] Univ Catania, Dept Econ & Business, I-95124 Catania, Italy
[3] Univ Portsmouth, Portsmouth Business Sch, Portsmouth PO1 2UP, Hants, England
[4] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[5] Polish Acad Sci, Syst Res Inst, PL-01447 Warshaw, Poland
关键词
Evolutionary multiobjective optimization; interactive procedure; ordinal regression; preference learning; GENETIC ALGORITHM; DECISION-MAKING; PREFERENCES; MODEL; SET;
D O I
10.1109/TEVC.2014.2303783
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes an interactive multiobjective evolutionary algorithm (MOEA) that attempts to learn a value function capturing the users' true preferences. At regular intervals, the user is asked to rank a single pair of solutions. This information is used to update the algorithm's internal value function model, and the model is used in subsequent generations to rank solutions incomparable according to dominance. This speeds up evolution toward the region of the Pareto front that is most desirable to the user. We take into account the most general additive value function as a preference model and we empirically compare different ways to identify the value function that seems to be the most representative with respect to the given preference information, different types of user preferences, and different ways to use the learned value function in the MOEA. Results on a number of different scenarios suggest that the proposed algorithm works well over a range of benchmark problems and types of user preferences.
引用
收藏
页码:88 / 102
页数:15
相关论文
共 50 条
  • [1] Interactive Evolutionary Multiobjective Optimization via Learning to Rank
    Li, Ke
    Lai, Guiyu
    Yao, Xin
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (04) : 749 - 763
  • [2] An Interactive Evolutionary Multiobjective Optimization Method Based on Progressively Approximated Value Functions
    Deb, Kalyanmoy
    Sinha, Ankur
    Korhonen, Pekka J.
    Wallenius, Jyrki
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (05) : 723 - 739
  • [3] Interactive multiobjective evolutionary optimization model for dam management support
    Castiglione, Federico
    Corrente, Salvatore
    Greco, Salvatore
    Bianucci, Paola
    Sordo-Ward, Alvaro
    Garrote, Luis
    Foti, Enrico
    Musumeci, Rosaria Ester
    JOURNAL OF HYDROLOGY, 2025, 647
  • [4] Interactive evolutionary multiobjective optimization driven by robust ordinal regression
    Branke, J.
    Greco, S.
    Slowinski, R.
    Zielniewicz, P.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2010, 58 (03) : 347 - 358
  • [5] Explainable interactive evolutionary multiobjective optimization
    Corrente, Salvatore
    Greco, Salvatore
    Matarazzo, Benedetto
    Slowinski, Roman
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2024, 122
  • [6] Interactive Decomposition Multiobjective Optimization Via Progressively Learned Value Functions
    Li, Ke
    Chen, Renzhi
    Savic, Dragan
    Yao, Xin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (05) : 849 - 860
  • [7] Interactive Multiobjective Optimization: A Review of the State-of-the-Art
    Xin, Bin
    Chen, Lu
    Chen, Jie
    Ishibuchi, Hisao
    Hirota, Kaoru
    Liu, Bo
    IEEE ACCESS, 2018, 6 : 41256 - 41279
  • [8] Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
    Afsar, Bekir
    Ruiz, Ana B.
    Miettinen, Kaisa
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (02) : 1165 - 1181
  • [9] Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
    Bekir Afsar
    Ana B. Ruiz
    Kaisa Miettinen
    Complex & Intelligent Systems, 2023, 9 : 1165 - 1181
  • [10] A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
    Pour, Pouya Aghaei
    Bandaru, Sunith
    Afsar, Bekir
    Emmerich, Michael
    Miettinen, Kaisa
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (03) : 778 - 787