Preparation, characterization and permeation property of Al2O3, Al2O3-SiO2 and Al2O3-kaolin hollow fiber membranes

被引:84
|
作者
Han, Ling-Feng [1 ,2 ]
Xu, Zhen-Liang [1 ,2 ]
Cao, Yue [1 ]
Wei, Yong-Ming [1 ]
Xu, Hai-Tao [1 ]
机构
[1] ECUST, Chem Engn Res Ctr, Membrane Sci & Engn R&D Lab, Shanghai 200237, Peoples R China
[2] ECUST, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
关键词
Alumina; Silica; Kaolin; Preparation; Hollow fiber membrane; ULTRAFILTRATION MEMBRANES; UF MEMBRANE; ALUMINA; SEPARATION; FABRICATION; SUSPENSIONS; KAOLINITE; CERAMICS; MULLITE;
D O I
10.1016/j.memsci.2011.01.065
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Al2O3, Al2O3-SiO2 and Al2O3-kaolin hollow fiber precursors were prepared by a wet-spinning method using polyethersulfone (PES), Al2O3, SiO2 and kaolin. The hollow fiber membranes were obtained after a preheating and sintering combining process. These inorganic hollow fiber membranes had been characterized by SEM, XRD, porosity, density, mechanical property, permeation property and the mean/maximum pore size as well as pore size distribution, to investigate the effects of SiO2 and kaolin on alpha-Al(2)OZ(3) hollow fiber membranes. The morphology of precursors depended on the particle contents and PES concentrations in the dispersion, and the final structure of sintered membranes were controlled by the precursors. XRD results showed that Al2O3 remained as alpha-Al2O3 before and after being sintered while SiO2 changed from tridymite to cristobalite from ambient temperature to 1450 degrees C, and at higher temperature it would react with Al2O3 to produce the stoichiometric 3:2 mullite (3Al(2)O(3)-2SiO(2), or Al6Si2O13) by solid state reaction. The effect of SiO2 and kaolin on the membrane properties depended on both the ratio of Al2O3:SiO2/kaolin and the sintering temperature. Moreover, when sintering temperature was 1600 degrees C, Al2O3-kaolin-5 (Al2O3 :kaolin = 1:1) achieved a mean pore size of about 0.5 mu m. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:154 / 164
页数:11
相关论文
共 50 条
  • [1] Preparation and characterization of Al2O3 hollow fiber membranes
    Li, JS
    Wang, LJ
    Hao, YX
    Liu, XD
    Sun, XY
    JOURNAL OF MEMBRANE SCIENCE, 2005, 256 (1-2) : 1 - 6
  • [2] Preparation, characterization and solvent resistance of γ-Al2O3/α-Al2O3 inorganic hollow fiber nanofiltration membrane
    Wang, Zhen
    Wei, Yong-Ming
    Xu, Zhen-Liang
    Cao, Yue
    Dong, Zhe-Qin
    Shi, Xian-Lin
    JOURNAL OF MEMBRANE SCIENCE, 2016, 503 : 69 - 80
  • [3] Preparation and characterization of monolithic Al2O3-SiO2 aerogel
    Chen, Heng
    Sui, Xueye
    Zhou, Changling
    Wang, Chonghai
    Liu, Futian
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2016, 124 (04) : 442 - 447
  • [4] Preparation and Characterization of Al2O3-SiO2 Composite Aerogels
    Li H.
    Chen J.
    Yue X.
    Xiang J.
    Cailiao Daobao/Materials Reports, 2019, 33 (09): : 3170 - 3174
  • [5] Al2O3-SiO2质材料抗Al2O3附着的研究
    曲殿利
    孙加林
    洪彦若
    钟香崇
    祝少军
    魏同
    耐火材料, 2003, (02) : 82 - 84
  • [6] SiO2-CaO-Al2O3 glass solder for joining of Al2O3 for Al2O3
    Ahn, BG
    Shiraishi, Y
    HIGH TEMPERATURE MATERIALS AND PROCESSES, 1998, 17 (04) : 209 - 216
  • [7] Preparation and Characterization of Highly Flexible Al2O3/Al/Al2O3 Hybrid Composite
    Wang, Zhijiang
    Hu, Henry
    Nie, Xueyuan
    JOURNAL OF NANOMATERIALS, 2015, 2015
  • [8] Asymmetric Al2O3 and PES/Al2O3 hollow fiber membranes for green tea extract clarification
    Maciel Bindes, Marlon Menezes
    Terra, Natalia Mazzarioli
    Patience, Gregory Scott
    Boffitoorcid, Daria Camilla
    Cardoso, Vicelma Luiz
    Miranda Reis, Miria Hespanhol
    JOURNAL OF FOOD ENGINEERING, 2020, 277
  • [9] Preparation and Characterization of FeCo-Al2O3 and Al2O3 Aerogels
    Anna Corrias
    Maria F. Casula
    Andrea Falqui
    Giorgio Paschina
    Journal of Sol-Gel Science and Technology, 2004, 31 : 83 - 86
  • [10] Study of the structural insertion of Al3+ in the Al2O3-SiO2 and Nd2O3-Al2O3-SiO2 glass systems
    da Silva, M. G. Ferreira
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (08) : 807 - 820