Bifurcation Analysis and Chaos Control in a Modified Finance System with Delayed Feedback

被引:16
作者
Yang, Jihua [1 ]
Zhang, Erli [2 ]
Liu, Mei [1 ,2 ]
机构
[1] Ningxia Normal Univ, Dept Math & Comp Sci, Xueyuan Rd, Guyuan 756000, Peoples R China
[2] Zhengzhou Inst Finance & Econ, Dept Informat Engn, Tianhe Rd 36, Zhengzhou 475000, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2016年 / 26卷 / 06期
基金
美国国家科学基金会;
关键词
Stability; Hopf bifurcation; Hopf-zero bifurcation; chaos control; GLOBAL COMPLICATED CHARACTER; TOPOLOGICAL-STRUCTURE; CRISIS; KIND;
D O I
10.1142/S0218127416501054
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the effect of delayed feedback on the finance system, which describes the time variation of the interest rate, for establishing the fiscal policy. By local stability analysis, we theoretically prove the existences of Hopf bifurcation and Hopf-zero bifurcation. By using the normal form method and center manifold theory, we determine the stability and direction of a bifurcating periodic solution. Finally, we give some numerical solutions, which indicate that when the delay passes through certain critical values, chaotic oscillation is converted into a stable equilibrium or periodic orbit.
引用
收藏
页数:14
相关论文
共 31 条
[11]   Multiple delay Rossler system - Bifurcation and chaos control [J].
Ghosh, Dibakar ;
Chowdhury, A. Roy ;
Saha, Papri .
CHAOS SOLITONS & FRACTALS, 2008, 35 (03) :472-485
[12]   Bifurcation analysis in the control of chaos by extended delay feedback [J].
Guo, Yuxiao ;
Jiang, Weihua ;
Niu, Ben .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (01) :155-170
[13]  
Hale J.K., 1977, THEORY FUNCTIONAL DI
[14]  
Hassard B., 1981, Theory and Applications of Hopf Bifurcation
[15]   Market stability switches in a continuous-time financial market with heterogeneous beliefs [J].
He, Xue-Zhong ;
Li, Kai ;
Wei, Junjie ;
Zheng, Min .
ECONOMIC MODELLING, 2009, 26 (06) :1432-1442
[16]   Chaotic attractors, chaotic saddles, and fractal basin boundaries: Goodwin's nonlinear accelerator model reconsidered [J].
Lorenz, HW ;
Nusse, HE .
CHAOS SOLITONS & FRACTALS, 2002, 13 (05) :957-965
[17]   Hopf bifurcation and topological horseshoe of a novel finance chaotic system [J].
Ma, Chao ;
Wang, Xingyuan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (02) :721-730
[18]   Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system(I) [J].
Ma, JH ;
Chen, YS .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2001, 22 (11) :1240-1251
[19]   Study for the bifurcation topological structure and the global complicated character of a kind of nonlinear finance system (II) [J].
Ma, Jun-Hai ;
Chen, Yu-Shu .
Applied Mathematics and Mechanics (English Edition), 2001, 22 (12) :1375-1382
[20]   Hopf bifurcation and chaos of financial system on condition of specific combination of parameters [J].
Ma, Junhai ;
Cui, Yaqiang ;
Liu, Lixia .
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2008, 21 (02) :250-259