Multiplicity of solutions for a class of Schrodinger-Maxwell systems

被引:2
作者
Duan, Shengzhong [1 ]
Wu, Xian [2 ]
机构
[1] Baoshan Univ, Dept Math, Baoshan 678000, Yunnan, Peoples R China
[2] Yunnan Normal Univ, Dept Math, Kunming 650092, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Schrodinger-Maxwell systems; lack of compactness; variational methods; sign-changing potential; SOLITARY WAVES; EXISTENCE; EQUATIONS;
D O I
10.1007/s00009-017-0994-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study existence and multiplicity of nontrivial solutions for a class of Schrodinger-Maxwell systems via variational methods. Some new existence results of nontrivial solutions are obtained.
引用
收藏
页数:25
相关论文
共 21 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1986, C BOARD MATH SCI
[3]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[4]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[5]   Solitons and the electromagnetic field [J].
Benci, V ;
Fortunato, D ;
Masiello, A ;
Pisani, L .
MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (01) :73-102
[6]  
Benci V., 1998, Topol. Methods Nonlinear Anal., V11, P283
[7]   Positive solutions for some non-autonomous Schrodinger-Poisson systems [J].
Cerami, Giovanna ;
Vaira, Giusi .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (03) :521-543
[8]   High energy solutions for the superlinear Schrodinger-Maxwell equations [J].
Chen, Shang-Jie ;
Tang, Chun-Lei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (10) :4927-4934
[9]  
Coclite G.M., 2003, Commun. Appl. Anal, V7, P417
[10]  
Coclite G.M., 2002, Ann. Polon. Math, V79, P21