Preparation of water-soluble graphene nanoplatelets and highly conductive films

被引:15
作者
Xu, Xuezhu [1 ]
Zhou, Jian [1 ]
Jestin, Jacques [2 ]
Colombo, Veronica [1 ,3 ]
Lubineau, Gilles [1 ]
机构
[1] KAUST, Phys Sci & Engn Div, COHMAS Lab, Thuwal 239556900, Saudi Arabia
[2] CEA Saclay, LLB, F-91191 Gif Sur Yvette, France
[3] Univ Padua, Chem & Mat Engn, I-35122 Padua, Italy
关键词
Graphene nanoplatelets; Water-soluble; Sodium hypochlorite; Sodium bromide; Colloids; Surface and interaction; Electrical double layer; DLVO theory; Film; Conductivity; FUNCTIONALIZED GRAPHENE; POLYCARBONATE NANOCOMPOSITES; METAL DICHALCOGENIDES; AQUEOUS DISPERSIONS; CARBON NANOTUBES; HIGH-PERFORMANCE; GRAPHITE OXIDE; HIGH-QUALITY; EXFOLIATION; SHEETS;
D O I
10.1016/j.carbon.2017.08.007
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper tackles the challenge of preparation stable, highly concentrated aqueous graphene dispersions. Despite tremendous recent interest, there has been limited success in developing a method that ensures the total dispersion of non-oxidized, defect-free graphene nanosheets in water. This study successfully demonstrates that few-layer graphene nanoplatelets (GNPs) can form highly concentrated aqueous colloidal solutions after they have been pretreated in a low-concentration inorganic sodium-hypochlorite and sodium-bromide salted aqueous solvent. This method retains the graphitic structure as evidenced by nuclear magnetic resonance spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Vacuum-filtrated freestanding films demonstrate an electrical conductivity as high as 3000 S m(-1). This dispersion technique is believed to be applicable not only for GNPs, but also for dispersing other types of graphitic materials, including fullerenes, single/double/multi-walled carbon nanotubes, graphene nanoribbons and etc. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:133 / 141
页数:9
相关论文
共 58 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]   Achieving Extremely Concentrated Aqueous Dispersions of Graphene Flakes and Catalytically Efficient Graphene-Metal Nanoparticle Hybrids with Flavin Mononucleotide as a HighPerformance Stabilizer [J].
Ayan-Varela, M. ;
Paredes, J. I. ;
Guardia, L. ;
Villar-Rodil, S. ;
Munuera, J. M. ;
Diaz-Gonzalez, M. ;
Fernandez-Sanchez, C. ;
Martinez-Alonso, A. ;
Tascon, J. M. D. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (19) :10293-10307
[3]   pH and the surface tension of water [J].
Beattie, James K. ;
Djerdjev, Alex M. ;
Gray-Weale, Angus ;
Kallay, Nikola ;
Luetzenkirchen, Johannes ;
Preocanin, Tajana ;
Selmani, Atida .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2014, 422 :54-57
[4]  
Behabtu N, 2010, NAT NANOTECHNOL, V5, P406, DOI [10.1038/NNANO.2010.86, 10.1038/nnano.2010.86]
[5]  
Brodie B.C., 1860, PHILOS T R SOC LONDO, V149, P249, DOI [10.1098/rspl.1859.0007, DOI 10.1098/RSTL.1859.0013]
[6]  
Cheng J., 2008, J PHYS CHEM, P50
[7]   Macroscopic Multifunctional Graphene-Based Hydrogels and Aerogels by a Metal Ion Induced Self-Assembly Process [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Wang, Ping ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (03) :2693-2703
[8]   Solvent Exfoliation of Transition Metal Dichalcogenides: Dispersibility of Exfoliated Nanosheets Varies Only Weakly between Compounds [J].
Cunningham, Graeme ;
Lotya, Mustafa ;
Cucinotta, Clotilde S. ;
Sanvito, Stefano ;
Bergin, Shane D. ;
Menzel, Robert ;
Shaffer, Milo S. P. ;
Coleman, Jonathan N. .
ACS NANO, 2012, 6 (04) :3468-3480
[9]   Stable aqueous colloidal solutions of intact surfactant-free graphene nanoribbons and related graphitic nanostructures [J].
Dimiev, Ayrat M. ;
Gizzatov, Ayrat ;
Wilson, Lon J. ;
Tour, James M. .
CHEMICAL COMMUNICATIONS, 2013, 49 (26) :2613-2615
[10]   3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection [J].
Dong, Xiao-Chen ;
Xu, Hang ;
Wang, Xue-Wan ;
Huang, Yin-Xi ;
Chan-Park, Mary B. ;
Zhang, Hua ;
Wang, Lian-Hui ;
Huang, Wei ;
Chen, Peng .
ACS NANO, 2012, 6 (04) :3206-3213