A resampling method by perturbing the estimating functions for quantile regression with missing data

被引:0
作者
Zhang, Li [1 ]
Lin, Cunjie [2 ]
Zhou, Yong [3 ,4 ]
机构
[1] Northwest Univ, Sch Econ & Management, Xian, Shaanxi, Peoples R China
[2] Renmin Univ China, Sch Stat, Beijing, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Beijing, Peoples R China
[4] Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Bootstrap; Estimating equations; Missing data; Resampling method; Quantile regression; INFERENCE;
D O I
10.1080/03610918.2016.1271892
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we propose a resampling method based on perturbing the estimating functions to compute the asymptotic variances of quantile regression estimators under missing at random condition. We prove that the conditional distributions of the resampling estimators are asymptotically equivalent to the distributions of quantile regression estimators. Our method can deal with complex situations, where the response and part of covariates are missing. Numerical results based on simulated and real data are provided under several designs.
引用
收藏
页码:6661 / 6671
页数:11
相关论文
共 20 条
[1]  
Andrews D. F., 1985, DATA A COLLECTION PR
[2]   Simple resampling methods for censored regression quantiles [J].
Bilias, Y ;
Chen, SN ;
Ying, ZL .
JOURNAL OF ECONOMETRICS, 2000, 99 (02) :373-386
[3]   Efficient Quantile Regression Analysis With Missing Observations [J].
Chen, Xuerong ;
Wan, Alan T. K. ;
Zhou, Yong .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (510) :723-741
[4]   1977 RIETZ LECTURE - BOOTSTRAP METHODS - ANOTHER LOOK AT THE JACKKNIFE [J].
EFRON, B .
ANNALS OF STATISTICS, 1979, 7 (01) :1-26
[5]   Continuing positive secular growth change in the Netherlands 1955-1997 [J].
Fredriks, AM ;
Van Buuren, S ;
Burgmeijer, RJF ;
Meulmeester, JF ;
Beuker, RJ ;
Brugman, E ;
Roede, MJ ;
Verloove-Vanhorick, SP ;
Wit, JM .
PEDIATRIC RESEARCH, 2000, 47 (03) :316-323
[6]   A general bahadur representation of M-estimators and its application to linear regression with nonstochastic designs [J].
He, XM ;
Shao, QM .
ANNALS OF STATISTICS, 1996, 24 (06) :2608-2630
[7]   The estimating function bootstrap [J].
Hu, FF ;
Kalbfleisch, JD .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (03) :449-481
[8]   Missing-data methods for generalized linear models: A comparative review [J].
Ibrahim, JG ;
Chen, MH ;
Lipsitz, SR ;
Herring, AH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (469) :332-346
[9]   Asymptotics for L1-estimators of regression parameters under heteroscedasticity [J].
Knight, K .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (03) :497-507
[10]   REGRESSION QUANTILES [J].
KOENKER, R ;
BASSETT, G .
ECONOMETRICA, 1978, 46 (01) :33-50