Cluster synchronization in fractional-order complex dynamical networks

被引:71
作者
Chen, Liping [1 ,2 ]
Chai, Yi [1 ,2 ]
Wu, Ranchao [3 ]
Sun, Jian [2 ]
Ma, Tiedong [2 ]
机构
[1] Chongqing Univ, State Key Lab Power Transmiss Equipment & Syst Se, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Sch Automat, Chongqing 400044, Peoples R China
[3] Anhui Univ, Sch Math, Hefei 230039, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Cluster synchronization; Complex dynamical networks; Fractional-order; Pinning control; SMALL-WORLD NETWORKS; PINNING CONTROL; PROJECTIVE SYNCHRONIZATION; CHAOS; SYSTEM; OSCILLATORS;
D O I
10.1016/j.physleta.2012.05.060
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Cluster synchronization of complex dynamical networks with fractional-order dynamical nodes is discussed in the Letter. By using the stability theory of fractional-order differential system and linear pinning control, a sufficient condition for the stability of the synchronization behavior in complex networks with fractional order dynamics is derived. Only the nodes in one community which have direct connections to the nodes in other communities are needed to be controlled, resulting in reduced control cost. A numerical example is presented to demonstrate the validity and feasibility of the obtained result. Numerical simulations illustrate that cluster synchronization performance for fractional-order complex dynamical networks is influenced by inner-coupling matrix, control gain, coupling strength and topological structures of the networks. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2381 / 2388
页数:8
相关论文
共 38 条
[1]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[2]   Robust outer synchronization between two complex networks with fractional order dynamics [J].
Asheghan, Mohammad Mostafa ;
Miguez, Joaquin ;
Hamidi-Beheshti, Mohammad T. ;
Tavazoei, Mohammad Saleh .
CHAOS, 2011, 21 (03)
[3]   Mean-field theory for scale-free random networks [J].
Barabási, AL ;
Albert, R ;
Jeong, H .
PHYSICA A, 1999, 272 (1-2) :173-187
[4]   Nonlinear dynamics and chaos in a fractional-order financial system [J].
Chen, Wei-Ching .
CHAOS SOLITONS & FRACTALS, 2008, 36 (05) :1305-1314
[5]   Synchronization of N-coupled incommensurate fractional-order chaotic systems with ring connection [J].
Delshad, Saleh Sayyad ;
Asheghan, Mohammad Mostafa ;
Beheshti, Mohammadtaghi Hamidi .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (09) :3815-3824
[6]   Chaotic dynamics of the fractional Lorenz system [J].
Grigorenko, I ;
Grigorenko, E .
PHYSICAL REVIEW LETTERS, 2003, 91 (03)
[7]   Complete synchronization and stability of star-shaped complex networks [J].
Gu, YQ ;
Shao, C ;
Fu, XC .
CHAOS SOLITONS & FRACTALS, 2006, 28 (02) :480-488
[8]   Lag synchronization of complex networks via pinning control [J].
Guo, Wanli .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (05) :2579-2585
[9]   CHAOS IN A FRACTIONAL ORDER CHUAS SYSTEM [J].
HARTLEY, TT ;
LORENZO, CF ;
QAMMER, HK .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (08) :485-490
[10]  
Heaviside Oliver., 1971, ELECTROMAGNETIC THEO