Identifying on admission patients likely to develop acute kidney injury in hospital

被引:23
作者
Argyropoulos, Anastasios [1 ]
Townley, Stuart [2 ]
Upton, Paul M. [3 ]
Dickinson, Stephen [3 ]
Pollard, Adam S. [3 ]
机构
[1] Univ Southampton, Fac Hlth Sci, Ctr Implementat Sci, Southampton SO17 1BJ, Hants, England
[2] Univ Exeter, Coll Engn Math & Phys Sci, Penryn TR10 9FE, Cornwall, England
[3] Royal Cornwall Hosp NHS Trust, Res Dev & Innovat, Truro TR1 3HD, England
关键词
Acute kidney injury; AKI; Fuzzy logic; Multivariable logistic regression; Risk factors; Forward selection; RISK; IDENTIFICATION; MODELS;
D O I
10.1186/s12882-019-1237-x
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
The incidence of Acute Kidney Injury (AKI) continues to increase in the UK, with associated mortality rates remaining significant. Approximately one fifth of hospital admissions are associated with AKI and approximately a third of patients with AKI in hospital develop AKI during their time in hospital. A fifth of these cases are considered avoidable. Early risk detection remains key to decreasing AKI in hospitals, where sub-optimal care was noted for half of patients who developed AKI. Electronic anonymised data for adults admitted into the Royal Cornwall Hospitals Trust (RCHT) between 18th March and 31st December 2015 was trimmed to that collected within the first 24 h of hospitalisation. These datasets were split according to three separate time periods: data used for training the Takagi-Sugeno Fuzzy Logic Systems (FLS) and the multivariable logistic regression (MLR) models; data used for testing; and data from a later patient spell used for validation. Three fuzzy logic models and three MLR models were developed to link characteristics of patients diagnosed with a maximum stage AKI within 7 days of admission: the first models to identify any AKI Stage (FLS I, MLR I), the second for patterns of AKI Stage 2 or 3 (FLS II, MLR II), and the third to identify AKI Stage 3 (FLS III, MLR III). Model accuracy is expressed by area under the curve (AUC). Accuracy for each model during internal validation was: FLS I and MLR I (AUC 0.70, 95% CI: 0.64-0.77); FLS II (AUC 0.77, 95% CI: 0.69-0.85) and MLR II (AUC 0.74, 95% CI: 0.65-0.83); FLS III and MLR III (AUC 0.95, 95% CI: 0.92-0.98). FLS II and FLS III (and the respective MLR models) can identify with a high level of accuracy patients at high risk of developing AKI in hospital. These two models cannot be properly assessed against prior studies as this is the first attempt at quantifying the risk of developing specific Stages of AKI for a broad cohort of both medical and surgical inpatients. FLS I and MLR I performance is comparable to other existing models.
引用
收藏
页数:11
相关论文
共 27 条
[1]  
[Anonymous], THESIS
[2]  
[Anonymous], 2013, APPL LOGISTIC REGRES
[3]  
Bedford M., 2016, Development of Risk Models for the Prediction of New or Worsening Acute Kidney Injury on or during Hospital Admission: a Cohort and Nested Study
[4]  
Cheng Peng, 2017, AMIA Annu Symp Proc, V2017, P565
[5]   Foreword [J].
Eckardt, Kai-Uwe ;
Kasiske, Bertram L. .
KIDNEY INTERNATIONAL SUPPLEMENTS, 2012, 2 (01) :7-7
[6]   Identifying the Patient at Risk of Acute Kidney Injury: A Predictive Scoring System for the Development of Acute Kidney Injury in Acute Medical Patients [J].
Forni, Lui G. ;
Dawes, Thomas ;
Sinclair, Hamish ;
Cheek, Elizabeth ;
Bewick, Vivien ;
Dennis, Mark ;
Venn, Richard .
NEPHRON CLINICAL PRACTICE, 2013, 123 (3-4) :143-150
[7]   Five myths about variable selection [J].
Heinze, Georg ;
Dunkler, Daniela .
TRANSPLANT INTERNATIONAL, 2017, 30 (01) :6-10
[8]   Systematic review of prognostic prediction models for acute kidney injury (AKI) in general hospital populations [J].
Hodgson, Luke Eliot ;
Sarnowski, Alexander ;
Roderick, Paul J. ;
Dimitrov, Borislav D. ;
Venn, Richard M. ;
Forni, Lui G. .
BMJ OPEN, 2017, 7 (09)
[9]   Prediction and detection models for acute kidney injury in hospitalized older adults [J].
Kate, Rohit J. ;
Perez, Ruth M. ;
Mazumdar, Debesh ;
Pasupathy, Kalyan S. ;
Nilakantan, Vani .
BMC MEDICAL INFORMATICS AND DECISION MAKING, 2016, 16
[10]   The economic impact of acute kidney injury in England [J].
Kerr, Marion ;
Bedford, Michael ;
Matthews, Beverley ;
O'Donoghue, Donal .
NEPHROLOGY DIALYSIS TRANSPLANTATION, 2014, 29 (07) :1362-1368