Robust Real-time RGB-D Visual Odometry in Dynamic Environments via Rigid Motion Model

被引:0
作者
Lee, Sangil [1 ]
Son, Clark Youngdong [1 ]
Kim, H. Jin [1 ]
机构
[1] Seoul Natl Univ, Dept Mech & Aerosp Engn, Automat & Syst Res Inst, Seoul 08826, South Korea
来源
2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2019年
关键词
D O I
10.1109/iros40897.2019.8968208
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the paper, we propose a robust real-time visual odometry in dynamic environments via rigid-motion model updated by scene flow. The proposed algorithm consists of spatial motion segmentation and temporal motion tracking. The spatial segmentation first generates several motion hypotheses by using a grid-based scene flow and clusters the extracted motion hypotheses, separating objects that move independently of one another. Further, we use a dual-mode motion model to consistently distinguish between the static and dynamic parts in the temporal motion tracking stage. Finally, the proposed algorithm estimates the pose of a camera by taking advantage of the region classified as static parts. In order to evaluate the performance of visual odometry under the existence of dynamic rigid objects, we use self-collected dataset containing RGB-D images and motion capture data for ground-truth. We compare our algorithm with state-of-the-art visual odometry algorithms. The validation results suggest that the proposed algorithm can estimate the pose of a camera robustly and accurately in dynamic environments.
引用
收藏
页码:6891 / 6898
页数:8
相关论文
共 50 条
[21]   Bi-objective Optimization for Robust RGB-D Visual Odometry [J].
Han, Tao ;
Xu, Chao ;
Loxton, Ryan ;
Xie, Lei .
2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, :1837-1844
[22]   Robust RGB-D Visual Odometry Using Point and Line Features [J].
Sun, Chao ;
Qiao, Nianzu ;
Ge, Wei ;
Sun, Jia .
2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, :3826-3831
[23]   Robust Visual Odometry to Irregular Illumination Changes with RGB-D camera [J].
Kim, Pyojin ;
Lim, Hyon ;
Kim, H. Jin .
2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, :3688-3694
[24]   Robust and Efficient RGB-D SLAM in Dynamic Environments [J].
Yang, Xin ;
Yuan, Zikang ;
Zhu, Dongfu ;
Chi, Cheng ;
Li, Kun ;
Liao, Chunyuan .
IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 :4208-4219
[25]   Real-Time Monocular Visual Odometry for Turbid and Dynamic Underwater Environments [J].
Ferrera, Maxime ;
Moras, Julien ;
Trouve-Peloux, Pauline ;
Creuze, Vincent .
SENSORS, 2019, 19 (03)
[26]   SP-VO: RGB-D Visual Odometry Using Static Parts Toward Dynamic Environments [J].
Jeon, Hyeongjun ;
Oh, Junghyun .
IEEE ACCESS, 2023, 11 :47202-47211
[27]   Accurate and Robust RGB-D Visual Odometry Based on Point and Line Features [J].
Zhao, Guojie ;
Zhang, Yupeng ;
Liu, Peichu ;
Wu, Haoen ;
Cui, Mingyang .
KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2021, PT II, 2021, 12816 :500-510
[28]   Real-time Pose Estimation of Rigid Objects using RGB-D Imagery [J].
Asif, Umar ;
Bennamoun, Mohammed ;
Sohel, Ferdous .
PROCEEDINGS OF THE 2013 IEEE 8TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2013, :1692-1699
[29]   Real-time Non-rigid Reconstruction using an RGB-D Camera [J].
Zollhoefer, Michael ;
Niessner, Matthias ;
Izadi, Shahram ;
Rehmann, Christoph ;
Zach, Christopher ;
Fisher, Matthew ;
Wu, Chenglei ;
Fitzgibbon, Andrew ;
Loop, Charles ;
Theobalt, Christian ;
Stamminger, Marc .
ACM TRANSACTIONS ON GRAPHICS, 2014, 33 (04)
[30]   Effective Background Model-Based RGB-D Dense Visual Odometry in a Dynamic Environment [J].
Kim, Deok-Hwa ;
Kim, Jong-Hwan .
IEEE TRANSACTIONS ON ROBOTICS, 2016, 32 (06) :1565-1573