3D printed PCL/SrHA scaffold for enhanced bone regeneration

被引:204
作者
Liu, Dinghua [1 ]
Nie, Wei [1 ]
Li, Dejian [2 ]
Wang, Weizhong [1 ]
Zheng, Lixia [1 ]
Zhang, Jingtian [1 ]
Zhang, Jiulong [3 ]
Peng, Chen [3 ]
Mo, Xiumei [1 ]
He, Chuanglong [1 ]
机构
[1] Donghua Univ, Coll Chem Chem Engn & Biotechnol, Minist Educ, Key Lab Sci & Technol Ecotext, Shanghai 201620, Peoples R China
[2] Fudan Univ, Pudong Med Ctr, Shanghai Pudong Hosp, Dept Orthoped, Shanghai 201301, Peoples R China
[3] Tongji Univ, Shanghai Peoples Hosp 10, Sch Med, Dept Radiol, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing technology; Strontium; Composite scaffold; Ions release; Bone regeneration; 3D-PRINTED SCAFFOLDS; COMPOSITE SCAFFOLD; HYDROXYAPATITE; DEPOSITION; OSTEOGENESIS; BIOMATERIAL; IONS;
D O I
10.1016/j.cej.2019.01.015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Strontium-containing hydroxyapatite (SrHA) is a promising material for bone repair and bone replacement due to the similar inorganic components with natural bone. In this study, the poly(epsilon-caprolactone) (PCL)/SrHA composite scaffold was fabricated by 3D printing method. Scanning electron microscopy (SEM) images of the fabricated scaffolds showed that SrHA was uniformly embedded in the interior of scaffold struts, and in vitro release profiles revealed that Sr and Ca ions released from the PCL/SrHA scaffold in a sustained manner. To confirm the performance of the fabricated composite scaffolds for bone regeneration, the cell proliferation and osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (BMSCs) grown on the scaffolds were evaluated. The experimental results indicated that incorporation of SrHA in the 3D printed PCL scaffold significantly facilitated the cell proliferation, and the PCL/SrHA scaffolds induced higher levels of BMSCs differentiation compared to the PCL and PCL/HA scaffolds, as demonstrated by ALP activity and osteo-related gene expression. Furthermore, in vivo cranial defect experiments further revealed that the incorporation of SrHA into 3D printed PCL scaffold was capable of promoting bone regeneration. Taken together, these results indicate that the PCL/SrHA composite scaffold can be readily fabricated by 3D printing technology and is highly promising as implantable material for bone tissue engineering application.
引用
收藏
页码:269 / 279
页数:11
相关论文
共 25 条
[1]   Treatment of long bone defects and non-unions: from research to clinical practice [J].
Berner, Arne ;
Reichert, Johannes C. ;
Mueller, Michael B. ;
Zellner, Johannes ;
Pfeifer, Christian ;
Dienstknecht, Thomas ;
Nerlich, Michael ;
Sommerville, Scott ;
Dickinson, Ian C. ;
Schuetz, Michael A. ;
Fuechtmeier, Bernd .
CELL AND TISSUE RESEARCH, 2012, 347 (03) :501-519
[2]   Strontium-substituted hydroxyapatite nanocrystals [J].
Bigi, Adriana ;
Boanini, Elisa ;
Capuccini, Chiara ;
Gazzano, Massimo .
INORGANICA CHIMICA ACTA, 2007, 360 (03) :1009-1016
[3]   A new insight into the dissociating effect of strontium on bone resorption and formation [J].
Braux, Julien ;
Velard, Frederic ;
Guillaume, Christine ;
Bouthors, Sylvie ;
Jallot, Edouard ;
Nedelec, Jean-Marie ;
Laurent-Maquin, Dominique ;
Laquerriere, Patrice .
ACTA BIOMATERIALIA, 2011, 7 (06) :2593-2603
[4]   Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing [J].
Butscher, A. ;
Bohner, M. ;
Hofmann, S. ;
Gauckler, L. ;
Mueller, R. .
ACTA BIOMATERIALIA, 2011, 7 (03) :907-920
[5]   Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: In vitro osteoblast and osteoclast response [J].
Capuccini, C. ;
Torricelli, P. ;
Sima, F. ;
Boanini, E. ;
Ristoscu, C. ;
Bracci, B. ;
Socol, G. ;
Fini, M. ;
Mihailescu, I. N. ;
Bigi, A. .
ACTA BIOMATERIALIA, 2008, 4 (06) :1885-1893
[6]   Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection [J].
Christoffersen, J ;
Christoffersen, MR ;
Kolthoff, N ;
Barenholdt, O .
BONE, 1997, 20 (01) :47-54
[7]   RETRACTED: 3D Printing of Bilineage Constructive Biomaterials for Bone and Cartilage Regeneration (Retracted Article) [J].
Deng, Cuijun ;
Yao, Qingqiang ;
Feng, Chun ;
Li, Jiayi ;
Wang, Liming ;
Cheng, Guofeng ;
Shi, Mengchao ;
Chen, Lei ;
Chang, Jiang ;
Wu, Chengtie .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (36)
[8]   In vivo biocompatibility and osteogenesis of electrospun poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone)/nano-hydroxyapatite composite scaffold [J].
Fu, ShaoZhi ;
Ni, PeiYan ;
Wang, BeiYu ;
Chu, BingYang ;
Peng, JinRong ;
Zheng, Lan ;
Zhao, Xia ;
Luo, Feng ;
Wei, YuQuan ;
Qian, ZhiYong .
BIOMATERIALS, 2012, 33 (33) :8363-8371
[9]   Hyperelastic "bone": A highly versatile, growth factor-free, osteoregenerative, scalable, and surgically friendly biomaterial [J].
Jakus, Adam E. ;
Rutz, Alexandra L. ;
Jordan, Sumanas W. ;
Kannan, Abhishek ;
Mitchell, Sean M. ;
Yun, Chawon ;
Koube, Katie D. ;
Yoo, Sung C. ;
Whiteley, Herbert E. ;
Richter, Claus-Peter ;
Galiano, Robert D. ;
Hsu, Wellington K. ;
Stock, Stuart R. ;
Hsu, Erin L. ;
Shah, Ramille N. .
SCIENCE TRANSLATIONAL MEDICINE, 2016, 8 (358)
[10]   A 3D bioprinting system to produce human-scale tissue constructs with structural integrity [J].
Kang, Hyun-Wook ;
Lee, Sang Jin ;
Ko, In Kap ;
Kengla, Carlos ;
Yoo, James J. ;
Atala, Anthony .
NATURE BIOTECHNOLOGY, 2016, 34 (03) :312-+