Estimates of biogenic methane production rates in deep marine sediments at Hydrate Ridge, Cascadia margin

被引:92
作者
Colwell, F. S. [1 ,2 ]
Boyd, S. [2 ,3 ]
Delwiche, M. E. [2 ]
Reed, D. W. [2 ]
Phelps, T. J. [4 ]
Newby, D. T. [2 ]
机构
[1] Oregon State Univ, Coll Ocean & Atmospher Sci, Corvallis, OR 97331 USA
[2] Idaho Natl Lab, Dept Biol Sci, Idaho Falls, ID 83415 USA
[3] Univ Idaho, Dept Environm Sci, Moscow, ID 83844 USA
[4] Oak Ridge Natl Lab, Div Environm Sci, Oak Ridge, TN 37831 USA
关键词
D O I
10.1128/AEM.02114-07
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Methane hydrate found in marine sediments is thought to contain gigaton quantities of methane and is considered an important potential fuel source and climate-forcing agent. Much of the methane in hydrates is biogenic, so models that predict the presence and distribution of hydrates require accurate rates of in situ methanogenesis. We estimated the in situ methanogenesis rates in Hydrate Ridge (HR) sediments by coupling experimentally derived minimal rates of methanogenesis to methanogen biomass determinations for discrete locations in the sediment column. When starved in a biomass recycle reactor, Methanoculleus submarinus produced ca. 0.017 fmol methane/cell/day. Quantitative PCR (QPCR) directed at the methyl coenzyme M reductase subunit A gene (mcrA) indicated that 75% of the HR sediments analyzed contained <1,000 methanogens/g. The highest numbers of methanogens were found mostly from sediments <10 m below seafloor. By considering methanogenesis rates for starved methanogens (adjusted to account for in situ temperatures) and the numbers of methanogens at selected depths, we derived an upper estimate of <4.25 fmol methane produced/g sediment/day for the samples with fewer methanogens than the QPCR method could detect. The actual rates could vary depending on the real number of methanogens and various seafloor parameters that influence microbial activity. However, our calculated rate is lower than rates previously reported for such sediments and close to the rate derived using geochemical modeling of the sediments. These data will help to improve models that predict microbial gas generation in marine sediments and determine the potential influence of this source of methane on the global carbon cycle.
引用
收藏
页码:3444 / 3452
页数:9
相关论文
共 65 条
[1]  
Atlas RM, 1998, MICROBIAL ECOLOGY FU
[2]   EQUIVALENCE OF MICROBIAL BIOMASS MEASURES BASED ON MEMBRANE LIPID AND CELL-WALL COMPONENTS, ADENOSINE-TRIPHOSPHATE, AND DIRECT COUNTS IN SUBSURFACE AQUIFER SEDIMENTS [J].
BALKWILL, DL ;
LEACH, FR ;
WILSON, JT ;
MCNABB, JF ;
WHITE, DC .
MICROBIAL ECOLOGY, 1988, 16 (01) :73-84
[3]   PCR bias in ecological analysis:: A case study for quantitative Taq nuclease assays in analyses of microbial communities [J].
Becker, S ;
Böger, P ;
Oehlmann, R ;
Ernst, A .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (11) :4945-+
[4]   A marine microbial consortium apparently mediating anaerobic oxidation of methane [J].
Boetius, A ;
Ravenschlag, K ;
Schubert, CJ ;
Rickert, D ;
Widdel, F ;
Gieseke, A ;
Amann, R ;
Jorgensen, BB ;
Witte, U ;
Pfannkuche, O .
NATURE, 2000, 407 (6804) :623-626
[5]   Hydrate Ridge: a natural laboratory for the study of microbial life fueled by methane from near-surface gas hydrates [J].
Boetius, A ;
Suess, E .
CHEMICAL GEOLOGY, 2004, 205 (3-4) :291-310
[6]   DIFFUSION OF THE INTERSPECIES ELECTRON CARRIERS H-2 AND FORMATE IN METHANOGENIC ECOSYSTEMS AND ITS IMPLICATIONS IN THE MEASUREMENT OF KM FOR H-2 OR FORMATE UPTAKE [J].
BOONE, DR ;
JOHNSON, RL ;
LIU, Y .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1989, 55 (07) :1735-1741
[7]  
BROCKMAN FJ, 1997, MICR EXTREM UNUSUAL, P75
[8]   Redefining relativity: quantitative PCR at low template concentrations for industrial and environmental microbiology [J].
Chandler, DP .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 1998, 21 (03) :128-140
[9]  
Chandler DP, 2001, WILEY S ECO, P281
[10]   THE DOMAINS OF SLOW BACTERIAL-GROWTH [J].
CHESBRO, W .
CANADIAN JOURNAL OF MICROBIOLOGY, 1988, 34 (04) :427-435