A new graph invariant arises in toric topology

被引:13
作者
Choi, Suyoung [1 ]
Park, Hanchul [2 ]
机构
[1] Ajou Univ, Dept Math, Suwon 443749, South Korea
[2] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
基金
新加坡国家研究基金会;
关键词
graph associahedron; toric topology; real toric variety; graph invariant; poset topology; shellable poset; COMPLEXES;
D O I
10.2969/jmsj/06720699
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce new combinatorial invariants of any finite simple graph, which arise in toric topology. We compute the i-th (rational) Betti number of the real toric variety associated to a graph associahedron P-B(G). It can be calculated by a purely combinatorial method (in terms of graphs) and is denoted by a(i)(G). To our surprise, for specific families of the graph G, our invariants are deeply related to well-known combinatorial sequences such as the Catalan numbers and Euler zigzag numbers.
引用
收藏
页码:699 / 720
页数:22
相关论文
共 21 条
[1]   SHELLABLE AND COHEN-MACAULAY PARTIALLY ORDERED SETS [J].
BJORNER, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 260 (01) :159-183
[2]   Coxeter complexes and graph-associahedra [J].
Carr, Michael ;
Devadoss, Satyan L. .
TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (12) :2155-2168
[3]  
Danilov V. I., 1978, USP MAT NAUK, V33, P85
[4]  
Davis M., 1998, Sel. Math., V4, P491, DOI [10.1007/s000290050039, DOI 10.1007/S000290050039]
[5]   CONVEX POLYTOPES, COXETER ORBIFOLDS AND TORUS ACTIONS [J].
DAVIS, MW ;
JANUSZKIEWICZ, T .
DUKE MATHEMATICAL JOURNAL, 1991, 62 (02) :417-451
[6]   PERIODIC HAMILTONIANS AND CONVEX IMAGES OF MOMENTUM MAPPING [J].
DELZANT, T .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (03) :315-339
[7]  
DEMARI F, 1992, T AM MATH SOC, V332, P529
[8]  
Fulton W., 1993, ANN MATH STUDIES, V113
[9]  
Hatcher A, 2002, Algebraic topology
[10]  
Henderson A, 2012, CRM SER, V14, P313