A doubled haploid (DH) population consisting of 125 DHLs derived from the popular rice hybrid, KRH-2 (IR58025A/KMR3R) was utilized for Quantitative Trait Loci (QTL) mapping to identify novel genomic regions associated with yield related traits. A genetic map was constructed with 126 polymorphic SSR and EST derived markers, which were distributed across rice genome. QTL analysis using inclusive composite interval mapping (ICIM) method identified a total of 24 major and minor effect QTLs. Among them, twelve major effect QTLs were identified for days to fifty percent flowering (qDFF12-1), total grain yield/plant (qYLD3-1 and qYLD6-1), test (1,000) grain weight (qTGW6-1 and qTGW7-1), panicle weight (qPW9-1), plant height (qPH12-1), flag leaf length (qFLL6-1), flag leaf width (qFLW4-1), panicle length (qPL3-1 and qPL6-1) and biomass (qBM4-1), explaining 29.95-56.75% of the phenotypic variability with LOD scores range of 2.72-16.51. Chromosomal regions with gene clusters were identified on chromosome 3 for total grain yield/plant (qYLD3-1) and panicle length (qPL3-1) and on chromosome 6 for total grain yield/plant (qYLD6-1), flag leaf length (qFLL6-1) and panicle length (qPL6-1). Majority of the QTLs identified were observed to be co-localized with the previously reported QTL regions. Five novel, major effect QTLs associated with panicle weight (qPW9-1), plant height (qPH12-1), flag leaf width (qFLW4-1), panicle length (qPL3-1) and biomass (qBM4-1) and three novel minor effect QTLs for panicle weight (qPW3-1 and qPW8-1) and fertile grains per panicle (qFGP5-1) were identified. These QTLs can be used in breeding programs aimed to yield improvement after their validation in alternative populations.