Quasi-exact solvability in a general polynomial setting

被引:15
作者
Gomez-Ullate, D. [1 ]
Kamran, N.
Milson, R.
机构
[1] Univ Complutense, Dept Fis Teor 2, E-28040 Madrid, Spain
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
关键词
D O I
10.1088/0266-5611/23/5/008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our goal in this paper is to extend the theory of quasi-exactly solvable Schrodinger operators beyond the Lie-algebraic class. Let P-n be the space of nth degree polynomials in one variable. We first analyze exceptional polynomial subspaces M subset of P-n, which are those proper subspaces of Pn invariant under second-order differential operators which do not preserve Pn. We characterize the only possible exceptional subspaces of codimension one and we describe the space of second-order differential operators that leave these subspaces invariant. We then use equivalence under changes of variable and gauge transformations to achieve a complete classification of these new, non-Lie algebraic Schrodinger operators. As an example, we discuss a finite gap elliptic potential which does not belong to the Treibich-Verdier class.
引用
收藏
页码:1915 / 1942
页数:28
相关论文
共 22 条
[1]   Quasi-exactly solvable (QES) equations with multiple algebraisations [J].
Brihaye, Y ;
Hartmann, B .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2003, 53 (11) :993-998
[2]   QES systems, invariant spaces and polynomials recursions [J].
Brihaye, Yves ;
Ndimubandi, Jean ;
Mandal, Bhabani Prasad .
MODERN PHYSICS LETTERS A, 2007, 22 (19) :1423-1438
[3]   Hidden algebras of the (super) Calogero and Sutherland models [J].
Brink, L ;
Turbiner, A ;
Wyllard, N .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (03) :1285-1315
[4]   Differential realizations of polynomial algebras in finite-dimensional spaces of monomials [J].
Debergh, N ;
Van den Bossche, B .
ANNALS OF PHYSICS, 2003, 308 (02) :605-638
[5]   AN-type Dunkl operators and new spin Calogero-Sutherland models [J].
Finkel, F ;
Gómez-Ullate, D ;
González-López, A ;
Rodríguez, MA ;
Zhdanov, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 221 (03) :477-497
[6]   A new algebraization of the Lame equation [J].
Finkel, F ;
González-López, A ;
Rodríguez, MA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (08) :1519-1542
[7]   Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies - An analytic approach [J].
Gesztesy, F ;
Weikard, R .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 35 (04) :271-317
[8]   Quasi-exact solvability beyond the sl(2) algebraization [J].
Gomez-Ullate, D. ;
Kamran, N. ;
Milson, R. .
PHYSICS OF ATOMIC NUCLEI, 2007, 70 (03) :520-528
[9]   Quasi-exact solvability and the direct approach to invariant subspaces [J].
Gómez-Ullate, D ;
Kamran, N ;
Milson, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (09) :2005-2019
[10]   The Darboux transformation and algebraic deformations of shape-invariant potentials [J].
Gómez-Ullate, D ;
Kamran, N ;
Milson, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (05) :1789-1804