OPTIMAL THREE-WEIGHT CUBIC CODES

被引:0
作者
Shi, Minjia [1 ,2 ]
Zhu, Hongwei [1 ,2 ]
Sole, Patrick [3 ]
机构
[1] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Minist Educ, 3 Feixi Rd, Hefei 230039, Anhui, Peoples R China
[2] Anhui Univ, Sch Math Sci, Hefei, Anhui, Peoples R China
[3] Univ Paris 08, CNRS, LAGA, 2 Rue Liberte, F-93526 St Denis, France
基金
中国国家自然科学基金;
关键词
Trace Codes; Three-Weight Codes; Griesmer Bound; Secret Sharing Schemes; CONSTACYCLIC CODES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct an infinite family of three-weight binary codes from linear codes over the ring R = F-2 + vF(2) + v(2)F(2)where v(3) = 1. These codes are defined as trace codes. They have the algebraic structure of abelian codes. Their Lee weight distributions are computed by employing character sums. The three-weight binary linear codes which we construct are shown to be optimal when m is odd and m > 1. They are cubic, that is to say quasi-cyclic of co-index three. An application to secret sharing schemes is given.
引用
收藏
页码:175 / 184
页数:10
相关论文
共 20 条
[1]  
[Anonymous], 1978, The Theory of Error-Correcting Codes
[2]   Minimal vectors in linear codes [J].
Ashikhmin, A ;
Barg, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) :2010-2017
[3]   Cubic self-dual binary codes [J].
Bonnecaze, A ;
Bracco, AD ;
Dougherty, ST ;
Nochefranca, LR ;
Solé, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (09) :2253-2259
[4]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[5]  
CALDERBANK AR, 1984, PHILIPS J RES, V39, P143
[6]   THE GEOMETRY OF 2-WEIGHT CODES [J].
CALDERBANK, R ;
KANTOR, WM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :97-122
[7]  
Delsarte Ph., 1972, Discrete Mathematics, V3, P47, DOI 10.1016/0012-365X(72)90024-6
[8]  
Ding C., 2011, DISCRETE MATH, V313, P434
[9]  
Ding CS, 2003, LECT NOTES COMPUT SC, V2731, P11
[10]   A Class of Two-Weight and Three-Weight Codes and Their Applications in Secret Sharing [J].
Ding, Kelan ;
Ding, Cunsheng .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (11) :5835-5842